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ABSTRACT

OPTIMIZING INFORMATION FRESHNESS IN RANDOM ACCESS
CHANNELS

Yavaşcan, Orhan Tahir

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Elif Uysal

August 2022, 92 pages

In this work, a number of transmission strategies aimed at optimizing information

freshness in random access channels are developed and studied. Threshold-ALOHA,

an age-aware modification of slotted ALOHA, suggests a fixed age threshold on the

terminals before they can become active and attempt transmissions with a constant

probability. Threshold ALOHA nearly halves the average Age of Information (AoI)

whilst the loss of throughput compared to slotted ALOHA is less than one percent.

Mumista, multiple mini slotted threshold Aloha, is a further iteration of threshold

Aloha that introduces mini slots before each data slot to enable a reservation based

mechanism and improve throughput. The set of parameters that achieve the optimal

throughput has been explicitly derived. Under ideal conditions, Mumista can ap-

proach theoretical limits of throughput and average age of information as closely as

desired. Finally, we investigate the optimality of the threshold policy in a wireless

energy transfer setting with a Gilbert-Elliott channel between a single transmitter and

receiver pair. We obtain the optimal parameters in closed form.

v



Keywords: slotted aloha, threshold, age of information, information freshness, mu-
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ÖZ

RASTGELE ERİŞİM KANALLARINDA BİLGİ TAZELİĞİNİ
ENİYİLEMEK

Yavaşcan, Orhan Tahir

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Elif Uysal

Ağustos 2022 , 92 sayfa

Bu çalışmada rastgele erişim kanallarında bilgi tazeliğini eniyileştiren birtakım paket

gönderim stratejileri geliştirilmiş ve çalışılmıştır. Eşikli Aloha, dilimli Aloha’nın yaş

farkında bir varyantı, terminallerin aktif olup sabit bir olasılıkla gönderim yapabil-

mesinden önce bir yaş eşiğinin varlığını önerir. Eşikli Aloha dilimli Aloha’ya kıyasla

kanal verimliliğinden yüzden birden az bir kayıpla bilgi yaşını neredeyse yarıya in-

dirir. Mumista, çoklu mini dilimli eşikli Aloha, eşikli Aloha’nın ileri bir iterasyonu

olarak her bir veri diliminden önce mini dilimler kullanılmasını, bu sayede rezervas-

yon temelli bir mekanizmanın kullanılmasını ve kanal verimliliğinin iyileştirilmesini

öne sürer. Mümkün olan en iyi kanal verimliliğini elde eden parametreler açıkça elde

edilmiştir. İdeal koşullar altında Mumista kanal verimliliğinin ve ortalama bilgi ya-

şının teorik sınırlarına istenildiği kadar yaklaşabilir. Son olarak, bir kablosuz enerji

transferi senaryosunda bir alıcı-iletici çifti arasındaki Gilbert-Elliott kanalı üstünde

eşikli bir protokolün optimalitesi incelenmiştir. İdeal parametreler kapalı formda elde

edinilmiştir.
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"Perfect is the enemy of good." - Voltaire
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CHAPTER 1

INTRODUCTION

Age of Information (AoI) emerged a decade ago [2, 3] as a metric facilitating the char-

acterization and control of information freshness in status-update based networked

systems, including Internet-of-Things (IoT) and Machine-type Communications sce-

narios. Many classical networking formulations have since been revisited from an

AoI analysis and optimization perspective [4, 5, 6, 7, 8, 9, 10]. The addressing of

random access with an AoI objective is relatively new [11], particularly motivated by

applications such as industrial automation, networked control systems, environmental

monitoring, health and activity sensing, where multiple sensor nodes send updates of

sensed data a common access point on a shared channel.

A series of recent works [1, 11, 12, 13, 14] studied basic abstractions that capture the

essence of information aging in this random access environment: (1) time is slotted

and nodes are synchronized to the slot timing, (2) concurrent transmissions result

in packet loss, (3) nodes make distributed transmission decisions, (4) the longer it

takes a node to successfully transmit a packet, the more its corresponding data flow

ages. These four are the essential assumptions underlying the problem analyzed in

this paper.

As a consequence of these assumptions, in order to keep the time-average age in

the network under control, the distributed decision mechanism needs to strike a bal-

ance between each node attempting transmission sufficiently often, and more than

one transmission attempts at a time being unlikely. This problem is related to the

classical problem of distributed stabilization of slotted ALOHA (see, e.g., [15]), re-

visited here through the lens of AoI, which is a fundamentally different performance

objective. Throughput optimality and age optimality in channel access scheduling
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often do not coincide [8]- a throughput optimal mechanism can be arbitrarily poor

in terms of average AoI, however, age optimality requires high throughput, and is

often attained at an operating point that is nearly throughput-optimal, an example of

which we will demonstrate in this paper in the context of random access. In the rest,

we first summarize the main contributions of this paper. Next, we briefly contrast

our results with those in recent literature, to highlight the salient points of this work

with respect to other related works. This will be followed by the system model, the

analysis, numerical examples and conclusions.

There have been previous studies of AoI optimization in scheduled access [13, 16,

17, 18]. MaxWeight type strategies where the transmission probabilities depend on

age [1, 8, 19] and CSMA-type policies [20, 21] have also been studied.

Stationary and distributed policies where new packets are generated at will (whereby

nodes generate a new sample when they decide to transmit) were considered in [22,

11, 23]. A pioneering study of age in random access [11] bounded the age perfor-

mance of slotted ALOHA: the time average age achievable by slotted ALOHA in a

large network of symmetric nodes is a factor of 2e away from an ideal round-robin

allocation. In [23], an AoI expression was derived considering up to a certain number

of retransmissions of the same packet, in a network using slotted ALOHA.

In Chapter 2, we provide a complete analysis of a recent random access policy, thresh-

old Aloha. We describe a detailed comparison between slotted Aloha and thresh-

old Aloha. In Chapter 3, a reservation-based policy is introduced based on thresh-

old Aloha, called MuMiSTA. MuMiSTA is thoroughly analyzed in terms of channel

throughput and age of information. In Chapter 4, we investigate how the information

freshness can be optimized in a wireless energy transfer setting. The optimality of a

threshold policy is shown to optimal for the memoryless and Markovian channels.
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CHAPTER 2

SLOTTED ALOHA WITH AN AGE THRESHOLD

2.1 System Model

We consider a wireless network containing n sources (alternatively, users) and a com-

mon access point (AP). The sources wish to send occasional status updates to their

(possibly remote) destinations reached through the AP. Nodes are synchronized with

a common time reference (obtained through a control channel), and there is a slotted

time-frame structure. We adopt the generate-at-will model [24] such that each source

that decides to transmit generates a fresh sample just before transmission (An exten-

sion to exogenous arrivals is made in Section 2.2.6). We disallow collision resolution,

such that if two or more users attempt transmission in the same slot, all transmitted

packets are lost. There are no re-transmissions. When a failed source attempts trans-

mission again, it generates a new packet. If there is no collision, the transmission of

the packet is successfully completed within a single time slot.

For simplicity, we will have each source generate a single data flow. The Age of Infor-

mation (AoI) of user i ∈ {1, . . . , n} (equivalently, that of flow i) at time slot t, Ai[t], is

defined as the number of time slots that have elapsed since the freshest packet of this

flow thus far received by the AP was generated. Due to the generate-at-will model we

imposed, Ai[t] is equal to the number of slots since the most recent successful trans-

mission of source i, plus one. In the case of a successful transmission, the sender

receives a 1-bit acknowledgement (possibly piggybacked on a back-channel packet.),

and resets the age of its flow to 1. Accordingly, the age process {Ai[t], t = 1, 2, . . .}
evolves as:

Ai[t] =

 1, source i transmits successfully at t− 1,

Ai[t− 1] + 1, otherwise.
(2.1)
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The long term average AoI of source i is defined as:

∆i = lim
T→∞

1

T

T−1∑
t=0

Ai[t] (2.2)

on each sample path where the limit exists. Next, we define the threshold-ALOHA

policy.

2.2 Problem Definition and Analysis

In slotted ALOHA, users initiate transmission attempts with a fixed probability τ

in each time slot. When buffering and re-transmissions are allowed, this algorithm

is unstable. Stabilization can be achieved through modification of the probability τ

according to the state of the network, which is often inferred through feedback about

successful transmission. In the same vein, feedback about successful transmissions

can be used by each source to determine its instantaneous age. In [12], a simple

modification of slotted ALOHA was proposed, which we shall refer to as threshold-

ALOHA in the rest of this thesis. (This algorithm was called Lazy Policy in [12], we

modify the name here to one that may be more descriptive of the nature of the policy.)

Threshold-ALOHA is a simple age-aware extension of slotted ALOHA: sources will

wait until their age reaches a certain threshold Γ, before they turn on their slotted

ALOHA mechanism, and only then start to attempt transmission with a fixed proba-

bility τ at each time slot. Hence, sources, who have successfully sent an update not

more than Γ − 1 time slots ago, stay idle and allow others with larger ages contend

for the channel. It was numerically observed, without proof, in [12] that this pol-

icy is an improvement over slotted ALOHA in the sense that it achieves around half

the long term average age achieved by regular slotted ALOHA, without significantly

compromising network throughput. Furthermore, it was hypothesized that the opti-

mal threshold scales with the network size as Γ = 2.2n. These will be confirmed

to be essentially correct, as part of the results of our precise analysis of the various

convergence modes of this policy.

From the above description of threshold-ALOHA, it is clear that the decision of each

source at time slot t is determined by its age at the beginning of this time slot: if

4



the age is below threshold, the node will stay idle, and if not, it will transmit with

probability τ . In [12] it was established that the age vector of the sources can be

used to denote the state of the network, and for any value of n, this state evolves as a

Markov Chain (MC):

A[t] ≜ ⟨A1[t] A2[t] . . . An[t]⟩ (2.3)

It was also shown in [12] that for the purpose of age analysis, it suffices to consider a

truncated version of this MC, which constitutes a Finite State Markov Chain (FSMC),

with a unique steady-state distribution. The truncated model is based on the obser-

vation that once the age of a source exceeds Γ, it becomes an active source, and its

behavior remains same regardless of how much further its age increases. In most of

the remainder of our analysis, unless stated otherwise, the ages of active sources will

be truncated at Γ. Due to the ergodicity of the FSMC, and due to the symmetry be-

tween the users, the time average AoI (2.2) of each user can be found by computing

the expectation over the steady-state distribution of the age, which is equal for all i:

∆i = lim
t→∞

E [Ai[t]] (2.4)

In the rest, we explore this steady-state distribution and exploit its asymptotic charac-

teristics.

2.2.1 Steady State Solution

As in [12], we define the truncated state vector:

AΓ[t] ≜
〈
AΓ

1 [t] AΓ
2 [t] . . . AΓ

n[t]
〉

(2.5)

where AΓ
i [t] ∈ {1, 2, . . . ,Γ} is the Aol of source i at time t ∈ Z+ truncated at Γ and

evolves as:

AΓ
i [t] =

 1, source i updates at time t− 1,

min
{
AΓ

i [t] + 1, Γ}, otherwise.
(2.6)

The resulting state space is S = {1, 2, . . . ,Γ}n. As shown in [12], {AΓ[t], t ≥ 1}
is a finite state Markov Chain (MC) with a unique steady state distribution. We first

describe the recurrent class.
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Proposition 1. If a state ⟨s1 s2 . . . sn⟩ in the truncated MC {AΓ[t], t ≥ 1} is

recurrent, then for distinct indices i and j, si = sj if and only if si = sj = Γ.

Proof. f Suppose at time t > 1, there exist two entries of the state vector that are equal

to 1, i.e., there is a pair of sources (i, j) such that si = sj = 1. This would imply

two simultaneous successful transmissions at t − 1. However, this is impossible due

to the assumption that colliding packets are lost. We extend this argument to cases

where si = sj = s < Γ and t > s. The existence of such an (i, j) pair implies two

simultaneous transmissions at t − s. As this is impossible, such (i, j) pairs cannot

exist. Finally, if the system started in a state where there are two (or more) users that

have the same age, a < Γ, at t = 1, these ages will grow to Γ in Γ− a time slots after

which they will be decoupled, because only one can get reset to 1 at a time. Therefore,

if the initial state of the MC is one that contains non-distinct below-threshold values,

the chain will leave this state in at most Γ time slots, and it will never return. This

implies that such states are transient.

According to Prop. 1, states where distinct users have equal below-threshold age are

transient. So, without loss of generality, the steady-state analysis that follows will be

limited to the remaining states, where si = sj if and only if si = sj = Γ. It will later

be proved that all the remaining states are recurrent, moreover, as there is a unique

steady state (from [12]) those states are all in the same recurrent class in the truncated

MC. So in the rest, we refer to the remaining states as recurrent states.

We define the type of a recurrent state in the following way:

T ⟨s1 s2 . . . sn⟩ = (M, {u1, u2, . . . , un−M}), (2.7)

where M is the number of entries equal to Γ (i.e., the number of active sources), and

the set {u1, u2, . . . , un−M} is the set of entries smaller than Γ (i.e., the set of ages

below the threshold).

Proposition 2. States of the same type have equal steady state probabilities.

Proof. Follows from the symmetry between users.

6



Next, we further show that, for a given M , the set {u1, . . . , un−M} has no effect on

the steady state probability of a state. In other words, this probability is determined

by M , the number of active sources. This facilitates the derivation of the distribution

of the number of active sources.

Lemma 1. The truncated MC {AΓ[t], t ≥ 1} has the following properties:

(i) Given a state vector ⟨s1 s2 . . . sn⟩, its steady state probability depends

only on the number of entries that are equal to Γ.

(ii) Let Pm be the total steady state probability of states having m active users. Then

Pm

Pm−1

=
(1− (m− 1)τ(1− τ)m−2)(n−m+ 1)

mτ(1− τ)m−1(Γ− 1− n+m)

.

(iii) Pm is explicitly given as (2.17) for m ≥ 0.

Proof. First, suppose that the given state vector has no entry equal to 1. Let the type

of this state vector be T1 ≜ (M, {u1, u2, . . . , un−M}), where M ∈ {0, 1, . . . , n} is the

number of entries equal to Γ and ui > 1, i = 1, 2, . . . , u −M . As there is no source

whose age is 1 at the current time, t, there has been no successful transmission in the

previous time slot, t− 1. Hence, the number of active users at t− 1 cannot have been

M + 1 or larger. So the state at t− 1 must be one of the following types:

• T2 ≜ (M, {u1 − 1, u2 − 1, . . . , un−M − 1})

• T3 ≜ (M − 1, {Γ− 1, u1 − 1, u2 − 1, . . . , un−M − 1})

If, on the other hand, there was a successful transmission whilst in types T2 and T3,

the resulting state would have been of type T0 ≜ (M − 1, {u1, u2, . . . , un−M , 1}).

Alternatively, if the given state vector has an entry that is equal to 1 at current time, t,

it indicates a successful transmission at t− 1. In this case, the given state vector is of

type T0 and the state at t− 1 must be of types T2 or T3, as defined above.

Let Ct be the set of states that are of type T0 or type T1. Let Ct−1 be the set of states

that are of type T2 or type T3. If the system is in a state that is in Ct at time t, then
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its state at time (t − 1) must be in Ct−1. This follows from the fact that there can be

at most 1 transmission at each time slot and due to Prop. 1 all source states except Γ

are unique. Similarly, if the system is in a state that is in Ct−1 at time (t− 1), then its

state at time t must be in Ct.

Any given state of type T2 evolves into a state of type T0 with probability Mτ(1 −
τ)M−1 and into a state of type T1 with probability 1 − Mτ(1 − τ)M−1. A state of

type T3 evolves into a state of type T0 with probability (M − 1)τ(1− τ)M−2 and into

a state of type T1 with probability 1 − (M − 1)τ(1 − τ)M−2. Let πTj be the steady

state probability of a single state of type Tj . By the arguments above, the steady-state

probabilities are related to each other by the following equations:

πT1 = πT2(1−Mτ(1− τ)M−1) + πT3M(1− (M − 1)τ(1− τ)M−2) (2.8)

πT0 = πT2τ(1− τ)M−1 + πT3(M − 1)τ(1− τ)M−2 (2.9)

As AΓ has a unique steady state, a solution set satisfying the above steady state equa-

tions shall yield the steady state probabilities. As (2.8) and (2.9) stand for all the

incoming and outgoing transition probabilities of all recurrent states, this set of equa-

tions fully describes the steady state probabilities. Part (i) of our claim can be tested

by assigning πm as the steady state probabilities of system states that have m sources

at state Γ. Noting that πT1 = πT2 = πM and πT0 = πT3 = πM−1, with appropriate

substitutions (2.8) becomes:

πM = πM(1−Mτ(1− τ)M−1) + πM−1M(1− (M − 1)τ(1− τ)M−2), (2.10)

and (2.9) becomes:

πM−1 = πMτ(1− τ)M−1 + πM−1(M − 1)τ(1− τ)M−2. (2.11)

Both of these equations are reduced to the same equation below that holds for all m:

πm

πm−1

=
1− (m− 1)τ(1− τ)m−2

τ(1− τ)m−1
. (2.12)

Therefore, part (i) holds and this can be used to calculate the steady state probability

of having m active users. The total number of states corresponding to πm are the

number of recurrent system states with m sources at truncated age Γ:

Nm =

(
n

m

)
(Γ− 1)!

(Γ− n− 1 +m)!
(2.13)
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Recall that Pm was defined as the total probability of all states with m active sources.

By Lemma 1 (i), each of these states are equiprobable with steady state probability

πm. Hence,

Pm = Nmπm, (2.14)

Pm

Pm−1

=
(1− (m− 1)τ(1− τ)m−2)(n−m+ 1)

τ(1− τ)m−1m(Γ− 1− n+m)
. (2.15)

From (2.15),

P0 =
1

1 +
∑n

m=1

∏m
i=1

(1−(i−1)τ(1−τ)i−2)(n−i+1)
iτ(1−τ)i−1(Γ−1−n+i)

, (2.16)

Pm = P0

m∏
i=1

(1− (i− 1)τ(1− τ)i−2)(n− i+ 1)

τ(1− τ)i−1i(Γ− 1− n+ i)
. (2.17)

provides the steady state solution.

2.2.2 Pivoted Markov Chain

In this part, we make our analysis over a single source, which we refer to as the pivot

source. Any source in the network can be selected as pivot. After selecting a source as

pivot, we modify the truncated MC of previous subsection, {AΓ[t], t ≥ 1}, to create

pivoted MC {PΓ[t], t ≥ 1}, where the states of all the sources except the pivot are

truncated at Γ.

We extend our definitions and arguments from the proof of Lemma 1 to PΓ, in par-

ticular extend the definition of types of states. The type of a state in PΓ is defined as:

TP⟨SP⟩ ≜ (s,M, {u1, u2, . . . , un−M−1}), (2.18)

where s ∈ Z+ is the state of the pivot source, M is the number of entries equal to

Γ (i.e., the number of active sources not including the pivot), and the set is the set of

entries smaller than Γ (i.e., the set of ages below the threshold, not including s). With

a slight abuse of notation, we will refer to such a state as type M -state where it is

clear from the context.

Proposition 3. (i) PΓ has a unique steady state distribution.
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(ii) Steady state probability of a type-m state in PΓ is equal to πm, obeying (2.12),

if s ∈ {1, 2, . . . ,Γ− 1}.

Proof. States in PΓ where s = 1, 2, . . . ,Γ − 1 have one-to-one correspondence with

the related states in the truncated MC AΓ. The system visiting these corresponding

states in PΓ and AΓ constitutes the same event hence these have identical steady state

probabilities and identical transition probabilities, by construction. Therefore, they

follow (2.12).

Next, we shall establish the existence of a steady state probability for the states in PΓ

for which s ≥ Γ. For a given s, we augment AΓ to form the augmented truncated MC

{As,Γ[t], t ≥ 1} where the pivot is truncated at s+1 and all other sources are truncated

at Γ. Truncation of the pivot source is illustrated in Fig. 2.1. Let us the call the state

where the state of the pivot source is s + 1 and state of all other sources is Γ the

unlucky state. The unlucky state can be reached by all the states in the MC, including

the unlucky state itself, if there are no successful transmissions in the network for

s consecutive time slots, which can happen with non-zero probability. This means

that there is a single recurrent class in this MC and a unique steady state distribution.

Finally, there is a one-to-one correspondence between the states of As,Γ and PΓ for

which the state of the pivot source is s. Existence of steady state probabilities for the

states in As,Γ entails the existence of steady state probabilities for the states in PΓ.

Definition 1. Let SP be a state in PΓ of type TP⟨SP⟩ = (s,m, {u1, u2, . . . , un−m−1}),
where the {ui} are ordered from largest to smallest. Q(SP), preceding type of SP, is

defined as follows:

Q(SP) =



TP⟨SP⟩, if s = 1

(s− 1,m, {Γ− 1, u1 − 1,

u2 − 1, . . . , un−m−2 − 1}),
if

s ̸= 1,

un−m−1 = 1

(s− 1,m, {u1 − 1, u2 − 1,

. . . , un−m−1 − 1}),
if

s ̸= 1,

un−m−1 ̸= 1

(2.19)

The reasoning behind Q(SP) is that if current state is SP and number of active sources

did not change in the previous time slot (excluding pivot source), then the type of pre-

vious state must be Q(SP). This does not hold for case s = 1, but we are not interested
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1 2 . . . s s+1 . . .

The truncated state

Figure 2.1: States of the pivot source in As,Γ compared to PΓ.

in such a characterization for this case; nevertheless, we choose Q(SP) to be the type

SP itself, so that we do not have to exclude this special case in what follows. Finally,

we denote the steady state probability of SP as π(SP) or π(s,m, {u1, u2, . . . , un−m−1}).

Lemma 2. Let SP
1 and SP

2 be two arbitrary states in PΓ where the state of the pivot

source is equal for both states. Let the types of SP
1 and SP

2 be:

TP⟨SP
1 ⟩ = (s,m1, {u1, u2, . . . , un−m1−1})

TP⟨SP
2 ⟩ = (s,m2, {v1, v2, . . . , vn−m2−1})

i) Let QP
1 be any state satisfying TP⟨QP

1⟩ = Q(SP
1 ). Then,

lim
n→∞

π(SP
1 )

π(QP
1)

= 1 (2.20)

ii) If m1 = m2, then

lim
n→∞

π(SP
1 )

π(SP
2 )

= 1 (2.21)

iii) If m1 = m2 + 1, then

lim
n→∞

π(SP
1 )

nπ(SP
2 )

=
ekα

α
− k, (2.22)

where limn→∞
m1

n
= k and limn→∞ τn = α. (k, α ∈ R+)

Proof. See Appendix A.

Theorem 1. For some r, α ∈ R+, such that limn→∞
Γ
n
= r and limn→∞ τn = α,

define f : (0, 1) → R:

f(x) = ln(
exα

xα
− 1) + ln(

r

x+ r − 1
− 1). (2.23)
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Then, for all m such that limn→∞
m
n
= k ∈ (0, 1) and s ∈ Z+

lim
n→∞

ln
P

(s)
m

P
(s)
m−1

= f(k), (2.24)

where P
(s)
m is the steady state probability of having m active sources (excluding the

pivot source), given that state of the pivot source is s.

Proof. The term P
(s)
m is the total steady state probability of states in which there are

m active users and the state of the pivot source is s. The number of such recurrent

states is:

Nm =

(
n− 1

m

)
(Γ− 1)!

(Γ− n+m)!
. (2.25)

Meanwhile, the number of recurrent states containing m− 1 active users is:

Nm−1 =

(
n− 1

m− 1

)
(Γ− 1)!

(Γ− n+m− 1)!
. (2.26)

Let Bm = {S(m)
1 , S

(m)
2 , . . . , S

(m)
Nm

} be the set of all recurrent type-m states where the

state of the pivot source is s.

Similarly, we define the set Bm−1 = {S(m−1)
1 , S

(m−1)
2 , . . . , S

(m−1)
Nm−1

} as the set of all

recurrent type-(m− 1) states where the state of the pivot source is s. Then,

lim
n→∞

P
(s)
m

P
(s)
m−1

= lim
n→∞

Nm∑
i=1

π(S
(m)
i )

Nm−1∑
j=1

π(S
(m−1)
j )

(2.27)

(a)
= lim

n→∞

n
Nm∑
i=1

[
π(S

(m)
i )/nπ(S

(m−1)
1 )

]
Nm−1∑
j=1

[
π(S

(m−1)
j )/π(S

(m−1)
1 )

]

(b)
= lim

n→∞

n
Nm∑
i=1

( e
kα

α
− k)

Nm−1∑
j=1

1

= lim
n→∞

nNm(
ekα

α
− k)

Nm−1

= lim
n→∞

n(n−m)( e
kα

α
− k)

m(Γ− n+m)
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=

(
ekα

kα
− 1

)(
1− k

r + k − 1

)
,

where (a) is obtained by by dividing both sides of the fraction by the steady state

probability of any element of Bm−1, which was arbitrarily chosen as the first element,

and (b) follows from Lemma 2 (ii) and (iii). Hence,

lim
n→∞

ln
P

(s)
m

P
(s)
m−1

= ln(
ekα

kα
− 1) + ln(

r

r + k − 1
− 1) = f(k). (2.28)

The above argument shows that as n → ∞ the relation P
(s)
m /P

(s)
m−1 determines the

PMF of m regardless of the state s of the pivot source. Consequently, the number of

active sources (excluding the pivot), m, is independent of the state of the pivot source.

We record this in the following corollary:

Corollary 1. In the case of a large network (n → ∞),

(i) The number of active sources, m, (excluding the pivot) is independent of the

state s of the pivot source.

(ii) As long as s ≥ Γ, the probability of a successful transmission being made by

the pivot source is τ(1− τ)m which has no dependence on s.

1 2 . . . Γ Γ+1 . . .1 1 1 1− qΓ

qΓ

qΓ+1

1-qΓ+1

Figure 2.2: State diagram of the pivot source

The transition probabilities qs marked on Fig. 2.2 refer to the probability of a success-

ful transmission made by the pivot source. In the rest, we will consider the asymptotic

case as the network size n grows. We will show that in the limit as n → ∞, qs is

equal to some qo for all values of s as long as the pivot source is active.
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(a) Single root case (α = 2, r = 1.5)
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Figure 2.3: Plot of f(k)
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(a) Single root case (α = 2, r = 1.5)

20 40 60 80 100
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

m

(b) Three-root case (α = 5, r = 2.5)

Figure 2.4: PMF of m (n = 100)

2.2.3 Large network asymptotics

In this part, we investigate the PMF of m, number of active sources in the network.

Function f of Theorem 1 gives valuable insight on the distribution of m and we will

derive some properties of f with the eventual goal of proving that the ratio of active

users, k, converges to the root of f in probability, presented in Theorem 2.

To facilitate the asymptotic analysis in the network size n, we replace the main pa-

rameters of the model, τ and Γ, with the following that control the scaling of these

parameters with n. As the number of active sources, m, takes values between 0 and

14



n, the fraction of active sources, k, will vary between 0 and 1.

α = nτ, r = Γ/n, k = m/n (2.29)

Proposition 4. Roots of f for which f is decreasing correspond one-to-one to the

local maxima of Pm, with a scale of n.

In this context, α and r are fixed system parameters while k, the fraction of active

users, is a variable indicating the instantaneous system load. As the change in Pm

is determined by f(k), the roots of f(k) provide the local extrema of Pm. Local

maxima of Pm are the points where both lnPm/Pm−1 and lnPm/Pm+1 are positive,

corresponding to roots of f(k) for which f is decreasing. This correlation is visible

in Figures 2.3 and 2.4. The following proposition restricts the number of roots f(k),

and therefore the number of local maxima Pm can have.

Proposition 5. The number of distinct roots of f is at least 1 and at most 3.

Proof. To prove that f has at least 1 root, it is sufficient to observe that f(0+) = +∞
and f(1−) = −∞. Since f is continuous in (0,1) domain, f has at least one root.

To prove that f has at most 3 roots, we formulate r in terms of α and k when f(k) = 0.

f(k) = ln(
ekα

kα
− 1) + ln(

r

k + r − 1
− 1) = 0 (2.30)

r =
ekα(1− k)

kα
(2.31)

dr

dk
=

ekα

k2α
(−αk2 + αk − 1) (2.32)

Since dr
dk

has at most two roots, there can be at most 3 different values of k that satisfy

(2.31). These are the only possible roots of f(k). Hence, f(k) has at most 3 roots.

Since f(k) has at most three roots, there can be at most 2 roots of f where f is de-

creasing and consequently at most two local maxima. Cases of one local maximum

and two local maxima are analyzed separately, however they lead to a similar discus-

sion. Theorem 2 is given for the case where f(k) has only one root and a single local

maximum. The case with 2 local maxima is discussed in Section 2.2.4.
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Theorem 2. Let k0 be the only root of f(k) and m be the number of active sources.

For the sequence ϵn = cn−1/3 where c ∈ R+,

Pr
(∣∣∣m

n
− k0

∣∣∣ < ϵn

)
→ 1 (2.33)

Proof. See Appendix B.

This theorem establishes that the fraction of active users converges in probability to k0

as the network size grows. Loosely speaking, threshold-ALOHA gradually converts

the system to one with nk0 users with a slotted ALOHA analysis. At steady state,

approximately nk0 sources will be making transmission attempts while remaining

n− nk0 sources with small age will be idle. For this reason, it resembles a stabilized

ALOHA algorithm. For large n, throughput of the channel remains close to e−1

while average age can be dramatically improved through optimal parameters, as will

be shown in the Section 2.2.5.

2.2.4 Double Peak Case

In this section, we extend the single peak analysis of the previous section to the case

with 2 peaks. Theorem 3 gives the same result as in Theorem 2, although it imposes

an additional integral constraint to be applicable.

So far, it has been argued that roots of f(k) where f is decreasing correspond to the

peaks in the probability distribution of the number of active sources. If there are two

such roots, then there will be two possible values of m where the number of active

sources are concentrated around. Accordingly, we define the following state sets:

S0 ≜

{
S | T ⟨S⟩ = (m, {. . .}) w.

m

n
≤ k0 + k1

2

}
(2.34)

S1 ≜

{
S | T ⟨S⟩ = (m, {. . .}) w.

k0 + k1
2

<
m

n
<

k1 + k2
2

}
(2.35)

S2 ≜

{
S | T ⟨S⟩ = (m, {. . .}) w.

k1 + k2
2

≤ m

n

}
(2.36)

S0 corresponds to the states where number of active users are around the smaller root

and S2 corresponds to the states where number of active users are around the larger
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Figure 2.5: State sets

root. States in between are grouped as S1 and thresholds are set at the mid-points

between consecutive roots.

In the proof of Theorem 3, it is shown that, if the integral is negative, probability of

S1 and S2 state sets diminishes as n goes to infinity. By showing that S0 happens

with probability 1, basic principles used for the single peak case can be used again to

derive similar results.

Theorem 3. Let f(k) have three distinct roots and k0, k1, k2 be the roots in increasing

order and m be the number of active sources.

i) If
k2∫

k0

f(k)dk < 0 (2.37)

then for the sequence ϵn = cn−1/3 where c ∈ R+,

Pr
(∣∣∣m

n
− k0

∣∣∣ < ϵn

)
→ 1 (2.38)

ii) If
k2∫

k0

f(k)dk > 0 (2.39)
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then for the sequence ϵn = cn−1/3 where c ∈ R+,

Pr
(∣∣∣m

n
− k2

∣∣∣ < ϵn

)
→ 1 (2.40)

Proof. See Appendix C.

The ratio of active users converges to either k0 or k2, depending on the sign of the

integral above. If the integral result is positive, this ratio will converge to the larger

root, however, this is not desired since larger root is equivalent to more active users

at the same time. In order to fully benefit from the age threshold, parameters should

be chosen such that k converges to k0.

Even though Theorem 3 yields a similar result as in Theorem 2, double peak cases

may not be as practical as single peak cases in networks with fewer users. For n

values that are not large enough, steady state probabilities of S1 and S2 may not be

small enough to yield useful results. As k values for state sets S1 and S2 are larger

than that for S0, these states have more active users, which may lead to the congestion

of the channel by having too many users trying to transmit at the same time. This

negates the benefit of threshold-ALOHA and should be avoided. Single peak cases

do not have S1 and S2 sets and system converges more quickly to k0.

In networks with a large number of users, initial conditions must be selected properly

to achieve good results. Selecting all users active initially leads to the aforementioned

congestion scenarios, slowing down the convergence in Theorem 3. As n increases,

the transition probabilities between state sets decrease exponentially. If the initial

state of the system is in S2, it may be nearly impossible for the network to reach

a state in S0 in a reasonable time period. Initial state of users can be randomized to

prevent initial congestion. Despite all these drawbacks, the double peak cases produce

asymptotically optimal values and are preferable as network size increases.
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2.2.5 Steady state average AoI in the large network limit

Theorem 4. Optimal parameters for threshold-ALOHA in an infinitely large network

satisfy the following:

lim
n→∞

Γ∗

n
= 2.21 (2.41)

lim
n→∞

nτ ∗ = 4.69 (2.42)

Moreover, the optimal expected AoI at steady state scales as:

lim
n→∞

∆∗

n
= 1.4169 (2.43)

Proof. As can be recalled from the ending of Section 2.2.2, q0 was defined as suc-

cessful transmission probability of an active source and it has been argued that q0 is

independent of the age of the active source. Alternatively, q0 can be expressed as:

q0 = E[τ(1− τ)M−1], (2.44)

where the expectation is over the distribution of M , the number of active sources at

steady state, which was characterized earlier. We firstly prove that

lim
n→∞

n q0 = αe−k0α. (2.45)

Let γn be defined as:

γn ≜ Pr(m0 − cn2/3 < M < m0 + cn2/3), (2.46)

where m0 = k0n. From Theorem 2 and 3, γn → 1 as n → ∞. When M is within the

bounds given in (2.46), the successful transmission probability is also bounded from

both sides. This is used to obtain the following bound:

γn[τ(1− τ)m0(1− τ)−cn2/3

] < q0 < (1− γn) +

γn[τ(1− τ)m0(1− τ)cn
2/3

]
(2.47)

As n goes to infinity, both upper and lower bounds converge to τ(1− τ)m0 . Finally,

lim
n→∞

n q0 = lim
n→∞

nτ(1− τ)m0 = αe−k0α (2.48)
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r∗ α∗ k∗
0 G ∆∗/n Thr.

TA (SP) 2.17 4.43 0.2052 0.9090 1.4226 0.3658

TA (DP) 2.21 4.69 0.1915 0.8981 1.4169 0.3644

SA 0 1 1 1 e e−1

Table 2.1: A comparison of optimized parameters of ordinary slotted ALOHA and

threshold-ALOHA, and the resulting AoI and throughput values. TA: Threshold-

ALOHA, SP: Single-Peak, DP: Double Peak, SA: Slotted ALOHA, r∗: Γ/n; α∗:

transmission probability×n; k∗
0: expected fraction of active users; G: expected num-

ber of transmission attempts per slot; ∆∗: avg. AoI, Thr: Throughput

Value of q0 can be used to compute steady state probabilities of a single source using

the model in Fig. 2.2. In this model, states are not truncated and age is equivalent to

state. Steady state probability of state j is:

πj =
(1− q0)

max{j−Γ,0}

Γ− 1 + 1/q0
, j = 1, 2, . . . (2.49)

Steady state probabilities are used to derive the following expected time-average AoI

expression:

∆ =
Γ(Γ− 1)

2(Γ− 1 + 1/q0)
+ 1/q0 (2.50)

Limiting behavior of average AoI is found as:

lim
n→∞

∆

n
=

r2

2(r + ek0α/α)
+ ek0α/α (2.51)

(2.51) can alternatively be expressed in terms of r and k0:

lim
n→∞

∆

n
= r

k2
0 + 1

2(1− k0)
(2.52)

Average AoI can be optimized by searching values of r and α that minimizes (2.51).

Optimal parameters and steady-state characteristics (expected fraction of active users,

expected average AoI and throughput) of threshold-ALOHA derived from (2.51) are

summarized in Table 2.1 and contrasted with those of regular slotted ALOHA as a
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reference. Note that as threshold-ALOHA has two possible operating regimes, re-

sults for these, namely the single peak case and double peak case are separately pro-

vided. Note that slotted ALOHA is a special case of threshold-ALOHA where the age

threshold is Γ = 1 and all users are active regardless of their ages, and thus r = 1/n

goes to 0, from (2.29).

In Table 2.1, G refers to the expected number of transmission attempts in a single

slot. Under threshold-ALOHA, G is equal to the the product of τ , probability of a

transmission attempt, and nk0, number of active users. As a result, G = k0α holds.

Value of G can be used to compare the throughput of basic slotted ALOHA and

threshold-ALOHA. Ge−G is the probability of a successful transmission under both

of these policies, since

lim
n→∞

nk0q0 = k0αe
−k0α = Ge−G. (2.53)

Hence, the probability of a successful transmission is upper bounded by e−1, with

equality if G = 1. Under an AoI-optimized selection of Γ and τ for TA, G is equal to

0.8981, for which the throughput is 0.3644. Note that the throughput drop from the

upperbound is below 1 percent, in return for reduction in AoI to almost half of what

is achievable with slotted ALOHA.

The AoI in slotted ALOHA under optimal parameters is [11]:

∆ =
1

2
+

1

τ(1− τ)n−1
. (2.54)

The expression in (2.54) can be minimized by setting τ = 1/n. Hence, optimal AoI

under slotted ALOHA has the following limit [23]:

lim
n→∞

∆SA

n
= lim

n→∞
1

2n
+

1(
1− 1

n

)n−1 = e. (2.55)

Finally, we observe a similarity between threshold-ALOHA and Rivest’s stabilized

slotted ALOHA [25, Sec. 4.2.3]. Rivest’s algorithm uses collision feedback to es-

timate the number of active sources, m̂(t), in each time slot and uses this estimate

to optimize the probability of transmission, τ(t), such that m̂τ = 1. Rivest’s al-

gorithm has also been exploited in [1] to achieve age-based thinning. Even though

threshold-ALOHA does not track the number of active users, we have showed that the

number of active users converges in probability to some m0 = nk0 (from (2.33)), and
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that under optimized parameter settings, m0τ is close to 1, similarly to what Rivest’s

stabilized ALOHA tries to achieve.

2.2.6 Extension to Exogenous Arrivals

The analysis so far has been concerned with a model where sources generate new

packets at will when they decide to transmit. We will now discuss how our analysis

may be extended to a model involving exogenous packet arrival process: At each time

slot, a new packet arrives at source i with probability λi, independently over users and

time slots. Arrivals occur frequently enough such that limn→∞ nλi = ∞. If a packet

arrival happens at time slot t, then ai(t) = 1 and ai(t) = 0 otherwise. If, upon an

arrival, the source already has a packet that has not been successfully transmitted, the

older packet is discarded and replaced by the new one.

In order to provide a lower bound on the performance of TA under these conditions,

we relax the policy to one where sources are permitted to make a transmission at-

tempt after Γ time slots even if they have not generated a new packet since their last

successful transmission. If no new packet has been generated, the packet available

at the source is identical to the most recent packet that was sent to the destination

and another successful transmission of this packet would not improve the age. How-

ever, this assumption is useful for the extension of our findings onto this case and its

analysis provides an upper bound on the optimal age due to its inferiority.

Note that transmission decisions are independent of the arrival times. As packet ar-

rival times do not influence when sources will make a transmission attempts and vice

versa, packet generation times and delivery times are independent of each other.

We define the age of flow i at the source as As
i [t] and the age of flow i at the destination

as Ai[t]. The ages refer to time between the current time (synchronized throughout

the network) and the creation time of the most recent packet available at the respective

location. As such, As
i [t] and Ai[t] evolve as:

As
i [t] =

 As
i [t− 1] + 1, ai(t) = 0

0, ai(t) = 1
(2.56)
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and

Ai[t] =

 As
i [t− 1] + 1, src. i update at time t− 1

Ai[t− 1] + 1, otherwise
(2.57)

We define U (i)
k to be the time of kth successful transmission made by source i. Finally,

Ti[t] is defined as the time elapsed since the last successful transmission was made by

source i, corresponding to the the age process of our original model.

Ti[t] = t−max{U (i)
k : U

(i)
k < t} (2.58)

As a result, Ai[t] can also be formulated as:

Ai[t] = As
i [t− Ti[t]] + Ti[t]

= As
i

[
max{U (i)

k : U
(i)
k < t}

]
+ Ti[t].

(2.59)

We refer to the average of Ti[t] as ∆TA
i , which was formulated as the average age of

the original model in (2.51).

∆TA
i = lim

T→∞

1

T

T∑
t=1

Ti[t] (2.60)

Let Ii[k] be the time between (k − 1)th and kth successful transmissions made by

source i. Then,

∆i = lim
T→∞

1

T

T∑
t=1

Ai[t]

(a)
= ∆TA

i + lim
T→∞

1

T

T∑
t=1

As
i

[
max{U (i)

k : U
(i)
k < t}

]
= ∆TA

i + lim
K→∞

∑K
k=1

∑Ii[k]
l=1 As

i [U
(i)
k ]∑K

k=1 Ii[k]

= ∆TA
i + lim

K→∞

∑K
k=1A

s
i [U

(i)
k ]Ii[k]∑K

k=1 Ii[k]

= ∆TA
i +

E
[
As

i [U
(i)
k ]Ii[k]

]
E [Ii[k]]

(b)
= ∆TA

i + E[As
i ]

where (a) follows from (2.59) and (2.60), and (b) follows from the independence be-

tween transmission policy and arrival processes. Average age of the packet at the

source is E[As
i ] and is equal to 1/λi [26]. The optimal value of ∆TA

i was shown to be

asymptotically 1.4169n while 1/λi diminishes compared to ∆TA
i , since limn→∞

1/λi

n
=
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0. As a result, optimal age can be upper bounded by 1.4169n in the limit of infi-

nite n since this average age is asymptotically achievable by the modified threshold-

ALOHA policy where the policy is worsened by forcing sources to make a trans-

mission attempt when they don’t have a fresh packet available. On the other hand,

optimal age is lower bounded by 1.4169n as well since having a fresh packet available

to send at all times is guaranteed to not increase the average age. Hence,

lim
n→∞

∆∗

n
= 1.4169. (2.61)

2.3 Numerical Results and Discussion

In this section, we present numerical plots and simulation results to illustrate our

theoretical findings and to perform comparisons with related policies. In Fig. 2.6,

optimal AoI results can be observed under threshold-ALOHA, slotted ALOHA and

stationary age-based thinning (SAT) policy presented in [1]. Simulations of SAT and

threshold-ALOHA were performed under different n values ranging from 50 to 1000

and run for 107 time slots. Initial states of the users were randomized so that a bias

from the initial congestion of having too many active users could be prevented and

the decentralized structure of the algorithm could be preserved. Note that avg. AoI

of threshold-ALOHA rises with slope 1.4169 with network size which is almost the

same as SAT and roughly half the slope of slotted ALOHA. Besides, the two recent

studies [1] and [14] stand out as closely related to our work. Below, we clarify the

contributions in this study in the light of these two related studies:

An independent analysis of threshold-ALOHA was carried out in [14], and the results

were supported by hardware experiments in [27]. The analysis in [14], however, is

based on an approximation that the states of the sources are independent of each

other. This stands in contrast to the results of our steady-state analysis (Lemma 1)

which identifies a strong dependence between the states of the sources through the

number of active sources in the system. Moreover, the analysis in [14] was limited to

the case of the transmission probability, τ , being below 2
n

, which, as we show in this

paper, is quite far from the optimal choice of the transmission probability, 4.69
n

. This

is consistent with the simulation results presented in [14] that indicate an AoI (2n, or

1.6n in two different simulation plots), which are above the optimal value of 1.41n.
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TA SAT [1] TA SAT [1]

Tx 0.9 e−1 Rx 0.9 n

Table 2.2: Comparison of the expected number of users in Tx and Rx modes in a time

slot during steady-state in threshold-ALOHA and SAT [1] under optimal parameters.

Akin to threshold-ALOHA (TA), SAT dictates that users stay silent before their ages

reach a fixed threshold. However, unlike TA, the probability of an active user making

a transmission is not fixed. Each user computes its transmission probability according

to its estimate of the number of active users. Users keep their estimates up-to-date by

staying in receive mode to detect collisions, even when they are not active. In TA,

on the other hand, users need to listen for ACK/NACK feedback only after their own

transmission attempts, which would allow them to go to an idle or sleep mode when

they are inactive. This may lead to a major difference between the power consumption

needed to implement each policy. As it can be seen in Table 1, the number of users

in receive mode in each slot increases linearly with n in the SAT policy, whereas it is

constant for TA. The constant value of 0.9 originates from the function G described

in Table 2, defined as the average number of users that make a transmission attempt

per time slot. At moderate transmission radii (e.g., below 100 meters), typical in IoT

and sensor networks, the power consumption in receive mode is comparable to that in

transmit mode. Therefore, as network density increases, the Rx energy consumption

is likely to be dominant [28]. This suggests that TA may be more suitable to dense

IoT deployments with energy constrained nodes.

The extensive analysis in [1] has shown that with SAT the average AoI scales as e
2
n

(1.3591n). We exhibit in this work that TA is able to achieve a scaling of 1.4169n.

In other words, SAT asymptotically achieves a 4% age advantage over TA. In terms

of throughput, the two fare closely: both policies achieve a throughput close to the

slotted ALOHA limit, which is around e−1. We finally remark that the 4% advantage

achieved by SAT comes at a cost of a considerably increased feedback requirement,

power consumption and computational complexity.
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Figure 2.6: Optimal time average AoI vs n, number of sources, under Slotted

ALOHA (computed from (2.54)), threshold-ALOHA (simulated) and SAT Policy

(simulated)

We showed above that threshold-ALOHA keeps the number of active users at any

time at steady state at about one-fifth of all users (see Table 2.1), with optimal pa-

rameter settings. This enables the users to utilize the channel more efficiently, ap-

proaching throughput of e−1 packets per slot. Fig. 2.7, plots Ge−G, where G = 1 has

been marked as the throughput optimal operating point of ordinary slotted ALOHA

and G = 0.89 has been marked for threshold-ALOHA. The corresponding through-

put values are e−1and 0.3658, respectively, which differ by less than 1%. Hence,

threshold-ALOHA nearly halves avg. AoI while maintaining a near-optimal through-

put.
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Figure 2.7: Throughput vs the expected number of transmissions in a slot, G.

27



28



CHAPTER 3

MUMISTA: MULTIPLE MINI SLOTTED THRESHOLD ALOHA

In the previous chapter, we have investigated the performance of threshold Aloha

and despite the policy nearly halving the average AoI compared to slotted Aloha; it

still suffers from the low throughput of e−1.Further improvements on the informa-

tion freshness are possible only with a dramatic improvement of the throughput [29].

With this intuition, we were motivated to create a new slot structure that would be

able to utilize the channel to a greater degree whilst preserving the random access

nature. Multiple Mini Slotted Threshold Aloha (MuMiSTA) is a reservation based

policy that can achieve nearly optimal throughput and average AoI that is comparable

to the round-robin policy. In the rest of this chapter, we provide a deep analysis of

MuMiSTA policy and determine the throughput-optimality and AoI-optimality con-

ditions.

3.1 System Model

We consider n nodes that interact with a common access point (AP) through a random

access channel. The information packets are generated by the nodes immediately be-

fore a transmission takes place. The nodes perform transmissions in a synchronized

manner. The time horizon is slotted, consisting of mini slots and data slots (explained

in II-A). No collision resolution is performed at the destination; if two or more nodes

attempt a transmission at the same time, all packets are discarded by the AP. Lost

packets are not retransmitted, the nodes continue their random access policies with

fresh packets in the next slot. We refer to the nodes that are ready to make a transmis-

sion and a possible contender for the random access channel as active nodes; whereas

the remaining nodes are referred to as passive nodes. The classification of nodes are
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carried out according to the transmission policy.

In MuMiSTA, we employ a novel slot structure where a time slot consists of W − 1

mini slots and a single data slot. In the beginning of the first mini slot, the active

users transmit a packet to reserve the data slot with probability τ1. If multiple nodes

make a transmission attempt in the mini slot, there will be a collision and the AP

will not be able to identify the transmitter. In this case, only the users that made a

transmission attempt in the first mini slot may try again in the next mini slot with

probability τ2. This process will be repeated in the remaining mini slots until either

W − 1 mini slots have passed and or there was a mini slot in which there has been

at most 1 user that has made a transmission attempt. If a node skips a mini slot by

not making a transmission attempt, it yields the chance to transmit a packet in the

data slot. If there is still a collision in the last mini slot after all the mini slots, all

the remaining nodes may make a transmission attempt to send their data packet in the

data slot with probability τW . In summary, there are W windows of oppurtunities to

determine a single node that will successfully transmit a packet in the data slot. In

the special case of W = 1, there are no mini slots and the setup is identical to that

of slotted ALOHA. The ratio between the length of a data slot and a mini slot is L

(L > 1).

Figure 3.1: Diagram of a single time slot, consisting of multiple mini slots and a data

slot

Similar to the Threshold-ALOHA policy of the previous chapter, we employ an age

threshold of Γ on the nodes before they may become active. Such an age threshold
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reduces the number of contenders for the channel use increase the probability of a

successful transmission by a node with a greater age.

3.2 Problem Definition and Analysis

3.2.1 Throughput Optimization Under The Mini Slot Extension

In this section, we derive a simplified expression for the throughput and calculate

optimal parameters. A successful transmission happens when there is a single node

that makes a transmission attempt in one of the mini slots. To denote the throughput,

we use T (n, τ1, τ2, ..., τW ), where n is the active node count and τ1, τ2, ..., τW are the

transmission probabilities described in II-A.

3.2.1.1 Ideal case

We shall initially neglect the size of the mini slots so that the throughput of the data

slots can be calculated. Later, we discuss the effect of L on the mini slots. The

following theorem presents the throughput in this sense:

Theorem 5. The throughput of MuMiSTA with n users for mini slots of negligible size

is:

T (n, τ1, τ2, ..., τW ) = n (1− κW )n−1 κW +
W−1∑
j=1

n (1− κj)
n−1 κj (1− τj+1) (3.1)

where κj is defined as κj ≜
∏j

i=1 τi.

Proof. We use proof by induction. The throughput is T (n, τ1) = nτ1 (1− τ1)
n−1

for W = 1, a successful transmission occurs iff there is exactly one user making a

transmission attempt.

Next, we assume the throughput expression holds for W = w0 and we shall analyze

over the case of W = w0 + 1. To this end, we may derive an expression for the prob-

ability of successful transmission by conditioning on the number of users that make a
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transmission attempt in the first mini slot. If there is only 1 user making a transmis-

sion attempt, it will be a success and there will be no need for the succeeding mini

slots. If there are i > 1 transmitters, the probability of success will be determined

from the following mini slots. As a result,

T (n, τ1, τ2, ..., τw0+1) = nτ1(1− τ1)
n−1 +

n∑
i=2

(
n

i

)
τ i1(1− τ1)

n−iT (i, τ2, ..., τw0+1)

(3.2)

Note that T (i, τ2, ..., τw0+1) corresponds to a system for which W = w0 and therefore,

T (i, τ2, ..., τw0+1) = iτ2...τw0+1 (1− τ2...τw0+1)
i−1

+

w0∑
j=2

iτ2...τj (1− τ2...τj)
i−1 (1− τj+1)

= i

(
1− κw0+1

τ1

)i−1
κw0+1

τ1
+

w0∑
j=2

i

(
1− κj

τ1

)i−1
κj

τ1
(1− τj+1)

(3.3)

due to the induction assumption.

T (n, τ1,τ2, ..., τw0+1) = nτ1(1− τ1)
n−1 +

n∑
i=2

(
n

i

)
τ i1(1− τ1)

n−i

[
i

(
1− κw0+1

τ1

)i−1
κw0+1

τ1
+

w0∑
j=2

i

(
1− κj

τ1

)i−1
κj

τ1
(1− τj+1)

]

= nτ1(1− τ1)
n−1 +

n∑
i=2

(
n

i

)
τ i1(1− τ1)

n−ii
κw0+1

τ1
(1− κw0+1

τ1
)i−1

+

w0∑
j=2

n∑
i=2

(
n

i

)
τ i1(1− τ1)

n−ii

(
1− κj

τ1

)i−1
κj

τ1
(1− τj+1)

(a)
= nτ1(1− τ1)

n−1 +
n−1∑
i=1

n

(
n− 1

i

)
τ i1(1− τ1)

n−1−iκw0+1(1−
κw0+1

τ1
)i

+

w0∑
j=2

n−1∑
i=1

nκj(1− τj+1)

(
n− 1

i

)
τ i1(1− τ1)

n−1−i(1− κj

τ1
)i

(3.4)
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(b)
= nτ1(1− τ1)

n−1 + nκw0+1

[
(1− κw0+1)

n−1 − (1− τ1)
n−1
]

+

w0∑
j=2

nκj(1− τj+1)
[
(1− κj)

n−1 − (1− τ1)
n−1
]

(c)
= nτ1(1− τ1)

n−1 + nκw0+1(1− κw0+1)
n−1

+

w0∑
j=2

nκj(1− τj+1)(1− κj)
n−1 − nτ1τ2(1− τ1)

n−1

= nκw0+1(1− κw0+1)
n−1 +

w0∑
j=1

nκj(1− τj+1)(1− κj)
n−1

(3.5)

where (a) follows from i
(
n
i

)
= n

(
n−1
i−1

)
, (b) follows from the binomial sum and (c)

follows from
∑w0

j=2 nκj(1−τj+1) =
∑w0

j=2 nκj−nκj+1 = nτ1τ2−nκw0+1. Induction

is complete.

Using the expression in Theorem 5, maximum achievable throughput can be calcu-

lated for finite number of users by calculating its partial derivatives. We will conduct

our analysis for infinitely many users. We define G as the expected number of trans-

mission attempts in the first mini slot, or alternatively,

lim
n→∞

nτ1 = G (3.6)

Then, with a slight abuse of notation, the throughput expression can be modified to

fit our problem in the infinite-user case:

T (G, τ2, ..., τW ) = lim
n→∞

T (n, τ1, τ2, ..., τW ) (3.7)

Consequently,

T (G, τ2, ..., τW ) = ζW exp (−ζW ) +
W−1∑
j=1

ζj exp (−ζj)(1− τj+1)

= ζW exp (−ζW ) +
W−1∑
j=1

(ζj − ζj+1) exp (−ζj)

(3.8)

follows from Theorem 5, where ζj is defined as:

ζj ≜ lim
n→∞

nκj = lim
n→∞

n

j∏
i=1

τi = G

j∏
i=2

τi (3.9)

The following theorem establishes the throughput-optimal parameters along with the

maximum achievable throughput.
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Theorem 6. Let {Bk}∞k=1 sequence be defined as:

B1 = 1 (3.10)

Bk = 1− exp(−Bk−1) (3.11)

Maximum throughput for infinitely many users with W rounds of transmission at-

tempts (W − 1 mini slots) is

T (W )
max = 1−BW+1 (3.12)

The optimal parameters are:

G∗ =
W∑
i=1

Bi (3.13)

τ ∗j =

∑W
i=j Bi∑W

i=j−1Bi

, j = 2, . . . ,W (3.14)

Proof. In order to maximize the throughput, we shall set all the partial derivatives of

the throughput to 0:
∂T (G, τ2, ..., τW )

∂G
= 0 (3.15)

∂T (G, τ2, ..., τW )

∂τj
= 0, j = 2, . . . ,W (3.16)

From (3.9), it can be seen that:

∂ζj
∂τi

=
ζj
τi
, W ≥ j ≥ i ≥ 2 (3.17)

and
∂ζj exp(−ζj)

∂τi
=

ζj exp(−ζj)(1− ζj)

τi
, W ≥ j ≥ i ≥ 2 (3.18)

If i is greater than j, ζj does not include a τi term and the derivative is equal to 0. By

calculating the derivative over τW , we obtain:

∂T (G, τ2, ..., τW )

∂τW
=

ζW exp(−ζW )(1− ζW )

τW
− exp(−ζW−1)ζW−1 = 0 (3.19)

Noting that ζW = ζW−1τW , we get:

1− ζW = exp(ζW − ζW−1). (3.20)
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For i = 2, 3, . . . ,W − 1, we may write the partial derivative from (3.9) as:

∂T (G, τ2, ..., τW )

∂τi
=

ζW exp(−ζW )(1− ζW )

τi

+
W−1∑
j=i

ζj exp(−ζj)(1− ζj)

τi
(1− τj+1)− exp(−ζi−1)ζi−1 = 0

(3.21)

Then,

τi
∂T (G, τ2, ..., τW )

∂τi
− τi+1

∂T (G, τ2, ..., τW )

∂τi+1

= ζi exp(−ζj)(1− ζj)(1− τi+1)

− exp(− ζi−1)ζi + exp(−ζi)ζi+1 = 0

(3.22)

Above can be rewritten as:

(1− ζi + ζi+1) = exp(ζi − ζi−1) (3.23)

which holds for i = 2, 3, . . . ,W − 1.

Lastly, G∂T (G, τ2, ..., τW )/∂G− τ2∂T (G, τ2, ..., τW )/∂τ2 = 0 yields:

exp(−ζ1) (1− ζ1 + ζ2) = 0 (3.24)

At this point, we can see that Bi = ζi − ζi+1, with (3.24) and (3.23) leading to (3.10)

and (3.11), respectively. Accordingly, (3.20) becomes:

1− ζW = exp(−BW−1) = 1−BW . (3.25)

and ζW = BW . Then, ζi =
∑W

j=iBj . We can write the parameters in terms of ζj’s as

G = ζ1 and τi = ζi+1/ζi, from which (3.13) and (3.14) follows. Finally, we evaluate

the throughput as:

T (G, τ2, ..., τW ) = ζW exp (−ζW ) +
W−1∑
j=1

(ζj − ζj+1) exp (−ζj)

= BW exp (−BW ) +
W−1∑
j=1

Bj exp

(
−

W∑
i=j

Bi

)

= BW exp (−BW ) +
W−1∑
j=1

Bj

W∏
i=j

exp (−Bi)

= BW (1−BW+1) +
W−1∑
j=1

Bj

W∏
i=j

(1−Bi+1)

= 1−BW+1

(3.26)
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The maximum throughput is expressed with an iterative sequence, and converges to

1 as the number of mini slots increases. In the following, we describe the asymptotic

behaviour of Bk sequence in order to provide an approximation for the use cases with

large W values.

Lemma 3. i) The {Bk}∞k=1 sequence above satisfies the following:

lim
k→∞

kBk = 2 (3.27)

ii) Maximum throughput in MuMiSTA satisfies the following:

T (W )
max = 1− 2

W
+ o

(
1

W

)
(3.28)

Proof. We define Dk sequence as follows:

Dk =
1

Bk

− 1

Bk−1

=
1

1− exp(−Bk−1)
− 1

Bk−1

. (3.29)

Alternatively, Dk can be expressed as a function of Bk−1:

Dk = g(Bk−1), (3.30)

where g function is defined as:

g(x) =
1

1− exp(−x)
− 1

x
=

x− 1 + exp(−x)

x− x exp(−x)
. (3.31)

Further, the limit of g as x (or Bk−1) goes to 0 is 1/2, found from the L’Hôpital’s rule.

lim
x→0

g(x) =
1

2
. (3.32)

lim
k→∞

Dk = lim
k→∞

1

Bk

− 1

Bk−1

=
1

2
. (3.33)

As a result, Stolz–Cesàro theorem can be used to derive the following limit:

lim
k→∞

1

kBk

= 2, (3.34)

which is equivalent to the first part of the lemma. The second part then follows

immediately from Theorem 6.

For the special case of W = 1, there are no mini slots and the policy is equal to

slotted Aloha. The results of the theorem are consistent for this case; the maximum

throughput is e−1 and ideal G is equal to 1.
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3.2.1.2 Realistic case

In a realistic scenario, the length of the mini slots shall be taken under consideration

when calculating the throughput. The data slot spans L
L+W−1

of a time slot in total.

The throughput in this case can simply be calculated by multiplying the throughput

from L = ∞ case with L
L+W−1

. Hence,

T (L,W )
max =

L(1−BW+1)

L+W − 1
(3.35)

Ideal value of W can be found by finding W ∗ such that:

T (L,W ∗)
max = max

{
T (L,W ∗−1)
max , T (L,W ∗)

max , T (L,W ∗+1)
max

}
. (3.36)

Theorem 7. Throughput optimal window size W ∗ is the greatest integer such that

h(W ∗) ≤ L where h(w) is defined as:

h(w) =
1

1− exp(Bw −Bw−1)
− (w − 1) (3.37)

Proof. To prove the theorem, we study the T
(L,w−1)
max ≤ T

(L,w)
max statement. This is

equivalent to:
L(1−Bw)

L+ w − 2
≤ L(1−Bw+1)

L+ w − 1
(3.38)

We use the property of (3.11) to obtain:

1 +
1

L+ w − 2
=

L+ w − 1

L+ w − 2
≤ 1−Bw+1

1−Bw

= exp(Bw−1 −Bw) (3.39)

Finally, above can be rewritten as:

1

1− exp(Bw −Bw−1)
− (w − 1) ≤ L (3.40)

The inequality in (3.40) should hold for w = W ∗ but not for w = W ∗ + 1.

The h sequence allows us to properly tune W to the size of the data slot and the mini

slots. For large L values, optimal W can simply be approximated as
√
2L. Then the

maximum achievable throughput then can be approximated to 1− 2
√

2
L

.
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3.2.2 AoI Optimization

3.2.2.1 Truncated State Space Model

In this section, we analyze the steady state behaviour of the MuMiSTA policy. We use

the previously explained truncated state space method in our analysis. The truncated

state vector is defined as:

AΓ[t] ≜
〈
AΓ

1 [t] AΓ
2 [t] . . . AΓ

n[t]
〉

(3.41)

where AΓ
i [t] ∈ {1, 2, . . . ,Γ} is the Aol of source i at time t ∈ Z+ truncated at Γ and

evolves as:

AΓ
i [t] =

 1, source i updates at time t− 1,

min
{
AΓ

i [t] + 1, Γ}, otherwise.
(3.42)

Let Sm be the probability of a successful transmission happening in a time slot when

there are m active users. Due to the symmetry and memorylessness, this is equivalent

to the throughput of a network with m nodes and no age-aware structure, i.e. Sm =

T (m, τ1, τ2, ..., τW ). In the following Lemma, we establish the distribution of the

number of active users.

Lemma 4. The truncated MC {AΓ[t], t ≥ 1} has the following properties:

i) Given a state vector ⟨s1 s2 . . . sn⟩, its steady state probability depends

only on the number of entries that are equal to Γ.

ii) Let Pm be the total steady state probability of states having m active users. Then

Pm

Pm−1

=
(1− Sm−1)(n−m+ 1)

Sm(Γ− 1− n+m)

iii) The steady state probability of having no active sources is

P0 =
1

1 +
∑n

m=1

∏m
i=1

(1−Si−1)(n−i+1)
Si(Γ−1−n+i)

Proof. We use the type argument of Lemma 1 in this proof. The type sets are:

• T0 ≜ (M − 1, {u1, u2, . . . , un−M , 1})
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• T1 ≜ (M, {u1, u2, . . . , un−M})

• T2 ≜ (M, {u1 − 1, u2 − 1, . . . , un−M − 1})

• T3 ≜ (M − 1, {Γ− 1, u1 − 1, u2 − 1, . . . , un−M − 1})

States of types T0 and T1 are preceded by the states of types T2 and T3 only. Fur-

thermore, states of types T2 and T3 are succeeded by states of types T0 and T1 only.

Steady state equations for states of types T0 and T1 can be written in the following

way:

πT1 = πT2(1−MSM) + πT3M(1− (M − 1)SM−1) (3.43)

πT0 = πT2SM + πT3(M − 1)SM−1 (3.44)

We next test the first property of the Lemma by assigning πm to be the steady state

probability of a state with m active users. By replacing πT1 and πT2 with πM and πT0

and πT3 with πM−1 yields:

πM = πM(1−MSM) + πM−1M(1− (M − 1)SM−1), (3.45)

πM−1 = πMSM + πM−1(M − 1)SM−1. (3.46)

These equations are reduced to the same equation below:

πm

πm−1

=
1− (m− 1)Sm−1

Sm

. (3.47)

Eq. (3.47) gives the only solution set due to the uniqueness of the steady state so-

lution. Second and third properties follows accordingly. The total number of states

corresponding to πm are the number of recurrent system states with m sources at

truncated age Γ:

Nm =

(
n

m

)
(Γ− 1)!

(Γ− n− 1 +m)!
(3.48)

Recall that Pm was defined as the total probability of all states with m active sources.

From the first property, each of these states are equiprobable with steady state proba-

bility πm. Hence,

Pm = Nmπm (3.49)
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Pm

Pm−1

=
(1− (m− 1)Sm−1)(n−m+ 1)

mSm(Γ− 1− n+m)
(3.50)

N∑
m=0

Pm = 1 (3.51)

From (3.50) and (3.51),

P0(1 +
n∑

m=1

m∏
i=1

(1− (i− 1)Si−1)(n− i+ 1)

iSi(Γ− 1− n+ i)
) = 1 (3.52)

Pm = P0

m∏
i=1

(1− (i− 1)Si−1)(n− i+ 1)

iSi(Γ− 1− n+ i)
(3.53)

provides the steady state solution.

Corollary 2. It should also be noted that mSm = T (m, τ1, τ2, ..., τW ) as the through-

put is the success probability of all active users. Consequently,

Pm

Pm−1

=
1− T (m− 1, τ1, τ2, ..., τW )

T (m, τ1, τ2, ..., τW )

n−m+ 1

Γ− 1− n+m
(3.54)

3.2.2.2 Pivoted MC

The following theorem is analogous to Theorem 1 of the previous chapter. Notice

that the theorem is a generalization of Theorem 1 and substituting T (αx, τ2, ..., τW )

with xα exp(−xα) grants the same expression as in Theorem 1.

Theorem 8. For some r, α ∈ R+, such that limn→∞
Γ
n
= r and limn→∞ τ1n = α,

define f : (0, 1) → R:

f(x) = ln

(
1

T (αx, τ2, ..., τW )
− 1

)
+ ln

(
r

x+ r − 1
− 1

)
(3.55)

Then, for all m such that limn→∞
m
n
= k ∈ (0, 1) and s ∈ Z+

lim
n→∞

ln

(
P

(s)
m

P
(s)
m−1

)
= f(k) (3.56)

where P
(s)
m is the steady state probability of having m active sources (excluding the

pivot source), given that state of the pivot source is s.

Proof. See Appendix D.
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3.2.2.3 Large Network Asymptotics

As in the previous chapter, the local maxima of the PMF of active nodes are the roots

of f where f is decreasing. Since f(0+) = ∞ and f(1−) = −∞, therefore, such a

root definitely exists. In the previous chapter, the number of such roots was shown to

be either 1 or 2. Theorems 2 and 3 had shown that if f has 1 or 2 such roots, then the

ratio of active users will converge to some k0 that could be estimated. The discussion

of these theorems hold for the generic case of MuMiSTA as well.

Lemma 5. Let ξ, the dominant root of f , be defined as:

ξ = ku, {u} = argmax
i

∫ ki

k0

f(k)dk (3.57)

Then, for the sequence ϵn = cn−1/3 where c ∈ R+,

Pr
(∣∣∣m

n
− ξ
∣∣∣ < ϵn

)
→ 1 (3.58)

Proof. The proof follows as in Appendix C, where k0 is replaced with ζ .

Finally, we present the average AoI expression that is derived as a result of Lemma 5.

The result is analogous to Theorem 4.

Theorem 9. For some r, α ∈ R+, such that limn→∞
Γ
n
= r and limn→∞ τ1n = α,

and let ξ be the dominant root of f . Then, the average AoI converges as:

lim
n→∞

∆

n
=

ξ2 + 1

2T (ξα, τ2, . . . , τW )
(3.59)

or alternatively,

lim
n→∞

∆

n
=

r

2

1 + ξ2

1− ξ
(3.60)

3.2.3 Numerical Results and Discussion

Numerical optimization of the average AoI can be performed by searching through

all of the system parameters. There are a total of W +1 parameters that can be tuned;

r and attempt probabilities, α, τ2, . . . , τW . Searching through all of these parameters,

however, is tedious with negligible benefit if it is not carried out inside throughput-

optimal region. Hence, we derive and fix the values of attempt probabilities except
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for the very first mini slot from Theorem 6. As a result of this, there remains two

parameters used to optimize AoI; r and α, as in threshold ALOHA.

The following optimization analysis and the simulations were performed for W = 32

case. The simulations were performed for n = 104 users and 106 time slots.

The throughput optimal value of G, or ζα as in Theorem 9, is 5.91 from Theorem

6. We have found through our computer-aided analysis that optimal AoI is achieved

for α = 219 or equivalently ζ = 0.0261. For this set of values, the corresponding

r was found to be 1.033. The channel throughput and average AoI are found to be

0.95 and 0.53062n respectively. It should be noted that an ideal round-robin policy

that serves each user in a perfect order would achieve a perfect throughput of 1 and

average AoI of 0.5n. Hence, there is a loss of around 6% in terms of throughput and

average AoI despite maintaining a random-access structure. Further, very low value

of ζ indicates that only 2.6% of all users are active at any time slot a great majority of

users sleep and conserve energy. Compared to slotted ALOHA policy, the throughput

is improved by 158% and average AoI is reduced by 80%.

Hence, MuMiSTA grants great improvements to the performance of a homogenous

random access setting in terms of throughput, information freshness and energy con-

sumption. These improvements, however, come at the cost of a more complicated

slot structure compared to slotted ALOHA. Consequently, depending on the system

requirements, MuMiSTA becomes a favorable alternative to the traditional random

access schemes in the future of IoT and mMTC applications.
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Figure 3.2: Optimal Throughput vs W

Figure 3.3: PMF of number of active users (W = 32, α = 219, r = 1.033)
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CHAPTER 4

OPTIMAL AGE PENALTY IN WIRELESS ENERGY TRANSFER

Wireless energy transfer (WET) using time-varying electric, magnetic, or electromag-

netic fields, has been considered viable for various communication systems [30, 31,

32]. This technology is especially attractive in the scenario of collecting data from

a sensor that does not have a significant energy source of its own. This implies a

mode of energy harvesting, where the source of energy is directly controlled by the

node who will pull the data from the sensor. The optimal planning of transmissions

in such a scenario has been considered in the literature (see, e.g., [33], and references

therein). In this paper, we formulate the problem from an Age of Information (AoI)

optimization perspective.

Optimal transmission scheduling [34] is the problem of modifying rate and power in

time according to energy availability, data demand, and channel variations, to transfer

data as efficiently as possible, i.e., maximize the throughput with the given amount

of energy, satisfy certain delay constraints, etc. Transmission scheduling to optimize

AoI is relatively new.

In recent years, there has been a growing interest in the combined analysis of infor-

mation freshness and energy harvesting. In [35], the problem of when to generate up-

dates under detailed energy harvesting constraints (energy causality constraints) was

formulated and solved. Each transmission consumes unit energy, and the goal of the

transmitter is to spread its transmissions as evenly as possible in time, while respect-

ing the energy causality constraints, to minimize average age. In [36], a stationary

transmission policy was considered for a source that harvests energy at a constant

rate λ, and has an infinite battery so that the energy causality constraints are not bind-

ing: there is always energy available when the source decides to transmit, as long as
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it does not use energy at higher rate than λ. In this model, packets are subject to iid

delays Y in the channel. A single-server policy is maintained, hence a new packet

can only start transmission once the transmission of the current packet is completed.

Loosely speaking, then, the long term average rate of transmissions cannot exceed

1/E[Y ]. Consequently, if the expected delay, E[Y ], exceeds 1/λ, then the transmitter

will have to use energy at a rate lower than the rate it is harvested at. Otherwise, the

transmitter has a choice to transmit at rate up to λ. The β-optimal policy proposed in

[36] computes the policy that ensures that the arriving energy is used at rate λ when-

ever feasible. However, it notices the curious phenomenon that with this policy, the

resulting age is non-monotone in the energy harvest rate λ. This indicates that the

policy is not optimal in general. The optimal policy was shown in [37] to be one that

possibly inserts a non-zero waiting time, Z(Y ), depending on the value of delay, even

though E[Y + Z(Y )] > 1/λ. In other words, for many delay distributions, it is not

optimal in terms of average age to transmit at the largest allowed update rate. The

result was also generalized to Markovian delay processes and general age penalties

in [37].

In this chapter, we consider a model where the receiver pulls data from a sensor by

sending energy to be harvested by a transmitter connected to that sensor (see Fig. 4.1).

This model allows the receiver to optimize the amount of energy it will deliver to the

transmitter by taking the channel state information into account and thus, to control

the long-term average age of information (AoI). Our aim is to derive the average age

penalty in closed form and minimize it. By formulating minimization as a constrained

Markov decision problem, we obtain an optimal decision policy which has minimum

energy consumption and keeps the flow retrieved from the sensor as fresh as possible.

The problem we study is closely related to the above literature [36, 37] in the sense

that it includes a finite average energy constraint, and a delay process that is caused

by the channel state being on or off: when the transmitter makes a decision to trans-

mit, the update is immediately received, followed by a random number of "off" slots

during which there is no opportunity to pull data and the age increases. On the other

hand, it differs from the models in [36, 37] in the sense that successful transmissions

reset the age down to a deterministic constant. This implies zero-wait being optimal

whenever feasible, hence the interesting case to be analyzed for this problem is the

46



regime where zero-wait is not feasible.

There have been studies on transmission scheduling under WET constraints: In [38],

time average AoI is investigated in a WET system with a Rayleigh block fading chan-

nel, where the transmitter waits until its battery is completely filled and uses all the

acquired energy for a single transmission. In [39], an energy harvesting transmitter

with a finite battery is studied in continuous time and it is shown that a threshold pol-

icy optimizes the expected time average age penalty. Another closely related recent

work is [40], which studies the long-term time average AoI under a constraint on the

average number of transmissions at the source node and examines standard ARQ and

hybrid ARQ (HARQ) protocols. Threshold policies for controlling age under vari-

ous energy harvesting settings have been studied in recent literature (see [41], and

references therein.)

4.1 System Model and Problem Formulation

A point-to-point channel comprising a transmitter-receiver pair is considered. The

channel can be in one of two states during any time slot: G (good) or B (bad). The

transmitter is passive, and the receiver will decide when to send energy to the trans-

mitter, and pull data from it. The transmitter, which relies solely on the energy har-

vested from the receiver, is only responsible for transmitting data to the receiver on

demand, and each transmission takes one time slot duration and requires one unit of

energy. It is also assumed that the receiver has an infinite battery, hence the energy

causality constraints are inactive as in [36]. The allowed long term average energy

usage is constrained by λ units per time slot. Transmissions always fail while the

channel state is B and succeed otherwise. The random transitions of the channel

states are analyzed under two models: (i) IID in each time slot, and (ii) Markovian.

Whenever the receiver receives a new packet from the source, it resets the age to unity

at the end of the slot. In the absence of a new reception, the age increases by 1 with

every new slot. Consequently, the age at the end of time slot t, denoted by ∆t, is

known by the receiver. The state of the system at any time t can be described by the

AoI ∆t and the channel state Ct at that time.
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Figure 4.1: System model.

In order to generically quantify the staleness of data packets under different con-

ditions, we define a general age penalty function g(∆) as a function of AoI. The

function g : Z+ → R is non-decreasing. In the rest of this paper, we analyze the

time average age penalty function. If the age penalty function is an identity function,

the expected age penalty becomes the time average AoI and if g(∆) = 1∆>γ , then

expected age penalty becomes the age violation probability; corresponding to two

commonly used metrics in the literature.

4.2 Problem Definition and Analysis

This leads to the constrained Markov decision process (CMDP) [42] formulation,

defined by the 5-tuple: (S,U , P, c, d) with the countable set of states S = Z+×{G,B}
and the finite action set U = {0, 1}. ut = 1 denotes that the transmission will be

performed and ut = 0 denotes that no transmission occurs. The state st consists of

the age ∆t and the channel state Ct at time t. P refers to the transition function, where

P(s′|s, u) = Pr(st+1 = s′|st = s, ut = u) is the probability that action u in state s at

time t will lead to state s at time t + 1. The cost function c : S × U → IR is a non-

decreasing function of the AoI at the destination, and is defined as c(s, u) = g(∆t),

for any s ∈ S, a ∈ A, independently of action a. The transmission cost d is related
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with the energy constraint λ and is identical for each transmission, d = 1 if ut = 1

and d = 0 otherwise. The age ∆t evolves as:

∆t+1 =

 1, if Ct = G and ut = 1

∆t + 1, otherwise
(4.1)

The evolution of the channel states is examined over two different scenarios. In Sec-

tion 4.2.1, we assume that the channel state becomes G and B at each time slot in an

independent and identically distributed (IID) fashion with their corresponding proba-

bility values PG and PB.

Pr(Ct+1 = c) =

 PG, if c = G

PB, if c = B
(4.2)

where PG > 0 and Ct+1 is independent of the age or the past realizations of the

channel states.

In Section 4.2.2, the results obtained for IID channel states are extended by consider-

ing time-correlated channel states which evolve as a Markovian process:

Pr(Ct+1 = c1 | Ct = c0) =


1− p10, if (c1, c0) = (G,G)

p01, if (c1, c0) = (G,B)

p10, if (c1, c0) = (B,G)

1− p01, if (c1, c0) = (B,B)

(4.3)

where pij ∈ (0, 1), with i, j ∈ {0, 1} indices standing for the channel state in former

and latter time slots, respectively.

A stationary policy is a decision rule denoted by π : S × U → [0, 1] which maps

the states s into actions a with some probability π(u|s). We try to minimize the

average age penalty under energy constraint λ, given the initial state s0 = (1,G). In

this manner, our focus is the age penalty function g(∆t). We can state the CMDP

optimization problem as follows, where E[·] represents expectation with respect to

the distribution of the age process induced by policy π and channel states Ct:

min
π

∆π(s0) = lim
T→∞

1

T
E[

T∑
t=1

g(∆t)|s0],

s.t. lim
T→∞

1

T
E[

T∑
t=1

uπ
t |s0] ≤ λ.

(4.4)
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A policy π∗ that is a solution of the above minimization problem is called optimal,

and we are interested in finding optimal policies.

4.2.1 Memoryless Channel

Constrained MDPs with countably infinite state-spaces as defined in Problem 4.2 are

generally difficult to solve since a stationary optimal policy, or an optimal policy in

general, are not guaranteed to exist [42]. Next, we show that an optimal stationary

policy exists for Problem 4.2 and define the structure of the optimal policy.

Theorem 10. There exists an optimal stationary policy for the CMDP in Problem 4.2

and it is randomized in at most a single point in the state-space S.

Proof. A sketch of the proof is given as follows: First, we show that Theorem 2.5,

Proposition 3.2, and Lemma 3.9 of [43] hold for Problem 4.2 by showing that As-

sumptions 1-4 of [43] hold. Then, by Theorem 2.5 of [43], there exists an optimal

stationary policy that is a mixture of two deterministic policies which differ in at

most one state and there exists a randomization coefficient denoted by pθ ∈ [0, 1]

such that π∗ satisfies the constraint with equality. The detailed proof can be obtained

by following the same steps as in [40].

As a result of Theorem 10, we restrict our attention to the stationary policies in the

rest of the paper.

4.2.1.1 Steady-State Analysis

In this section, we investigate steady-state behavior of the Markov Chain constructed

by the states st as defined in Section 4.1, under a reasonable stationary policy. The

MC has a unique steady state distribution if it is irreducible and positive recurrent

[26, Ch. 6].

All states in the MC are reachable from the ∆ = 1 state, because for any k ≥ 1; if

the channel state is B between t and t + k, then age increases by k with probability
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1. Hence, Pr(∆t+k = k + 1 | ∆t = 1) ≥ P k
B. To show that the ∆ = 1 state is

positive recurrent, we consider the expected time between consecutive transmissions.

If the expected time is infinite, then the average energy cost would be 0 and such a

policy would obviously be inferior to the ones that satisfy the constraint in (4.4) with

equality. If the expected time between the transmissions is finite, then expected return

time to ∆ = 1 state is finite and the MC is positive recurrent. Consequently, there are

policies that lead to a steady-state distribution and we focus on such policies. We use

Pr(∆ = k) to denote the steady-state probability of the age being equal to k.

4.2.1.2 Structure of the Optimal Stationary Policy

In Problem 1, if there was no energy constraint (λ → ∞), the transmitter would

be able to take advantage of all transmission opportunities. Note that, if λ ≥ PG,

such an unconstrained policy is feasible (due to the infinite battery assumption, the

transmitter will never have to idle at a transmission opportunity.) Any policy that

misses a transmission opportunity can only do worse, because in any sample path of

the channel state process consisting of random realizations of G and B slots, the age

graph of a policy that exploits all the G slots will be dominated by any other feasible

age plot. That is, as the zero wait policy brings the age down to unity at all G slots,

its age will be below or equal to that of any other feasible age graph attainable on the

same sample path. Therefore, unlike in [36, 37], in the case that λ ≥ PG, the optimal

policy is a zero-wait policy.

Having made this observation, for the rest of the paper, we focus on the nontrivial

case λ < PG. In the following, we show the optimality of a threshold policy that fully

utilizes the energy constraint for remaining cases:

Theorem 11. Let Θ be an integer for which there exists a stationary policy, π∗, such

that

(i) Pr(u = 1 | ∆ < Θ, C = G) = 0

(ii) Pr(u = 1 | ∆ > Θ, C = G) = 1

(iii) Pr(u = 1 | C = B) = 0
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(iv) Pr(u = 1) = λ

when π∗ is employed. Then, π∗ is optimal for Problem 1 such that for any stationary

policy π;

∆π(s0) ≥
∞∑
k=1

g(k)h(k) (4.5)

where h(k) is defined as:

h(k) =

 λ, k ≤ Θ

(1− λΘ)PGP
k−Θ−1
B , k ≥ Θ+ 1

(4.6)

Furthermore, (4.5) is tight when π ≡ π∗.

In this theorem, the optimal age penalty and the properties of the optimal policy are

stated. The first two conditions on π∗ suggest a threshold policy, while the latter

conditions ensure that the policy does not waste energy.

Before laying out the proof of the theorem, we investigate the steady state distribution

of the AoI. At any time t, the relation between Pr(∆t = k) and Pr(∆t+1 = k + 1)

can be derived using (4.1):

Pr(∆t+1 = k + 1) = Pr(∆t = k)(1− PG Pr(ut = 1 | st = (k,G))) (4.7)

As we restrict attention to stationary policies (without loss of optimality, by Thm. 1),

the above equation can be rewritten as:

Pr(∆ = k + 1)

Pr(∆ = k)
= 1− PG Pr(u = 1 | s = (k,G)) (4.8)

From (4.8), Pr(∆ = k + 1) ≤ Pr(∆ = k) and therefore the PMF of AoI at steady

state is monotonic. The following Lemma uses the monotonicity to establish a lower

bound on the age violation probability.

Lemma 6. For any γ ∈ Z+,

Pr(∆ ≥ γ + 1) ≥ 1− λγ (4.9)

with equality if and only if

(i) Pr(u = 1 | ∆ < γ,C = G) = 0
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(ii) Pr(u = 1 | C = B) = 0

(iii) Pr(u = 1) = λ

Proof. The state of ∆ = 1 corresponds one-to-one to the successful transmissions by

the transmitter and the probability of a transmission occurring on average must not be

greater than λ. Hence,

Pr(∆ = 1) ≤ Pr(u = 1) ≤ λ (4.10)

Equality in (4.10) holds iff a successful transmission happens with probability λ at

steady state. In other words, the energy constraint shall be fully utilized and available

energy shall not be wasted on transmitting while the channel is B, corresponding to

the second and third properties. Due to the monotonicity, Pr(∆ = k) ≤ λ for any k

as a result of (4.10). Finally,

Pr(∆ ≥ γ + 1) = 1−
γ∑

k=1

Pr(∆ = k) ≥ 1− λγ (4.11)

Equality in (4.11) holds iff Pr(∆ = k) = λ for all k < γ. In order for this to happen,

there must be no successful transmission while the age is smaller than γ due to (4.8),

yielding the first condition.

Lemma 6 describes a lower limit on the age violation probabilities for small violation

thresholds. If γ is larger than 1/λ, then 1−λγ would be negative and the inequality in

Lemma 6 would be loose. In order to support larger violation thresholds, we present

Lemma 7.

Lemma 7. For any γ,m ∈ Z+; if γ > m, then

Pr(∆ ≥ γ + 1) ≥ P γ−m
B (1− λm) (4.12)

with equality if and only if

(i) Pr(u = 1 | ∆ < m,C = G) = 0

(ii) Pr(u = 1 | ∆ > m,C = G) = 1

(iii) Pr(u = 1 | C = B) = 0
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(iv) Pr(u = 1) = λ

Proof. Let k be an arbitrary positive integer. If the channel state is B and AoI is k at

time t, AoI at time t+ 1 is k + 1 with probability 1. Therefore,

PB Pr(∆ = k) ≤ Pr(∆ = k + 1) (4.13)

Through induction, we can show that for any r ∈ Z+,

P r
B Pr(∆ = k) ≤ Pr(∆ = k + r) (4.14)

holds. Using this property, following relation between Pr(∆ ≥ k+1) and Pr(∆ = k)

is obtained:

Pr(∆ ≥k + 1) =
∞∑
r=1

Pr(∆ = k + r)

≥
∞∑
r=1

P r
B Pr(∆ = k) =

PB

PG

Pr(∆ = k)

(4.15)

The fact that Pr(∆ ≥ k) − Pr(∆ ≥ k + 1) = Pr(∆ = k) can be used to rewrite

(4.15) as:

PB Pr(∆ ≥ k) ≤ Pr(∆ ≥ k + 1) (4.16)

Through induction,

P r
B Pr(∆ ≥ k) ≤ Pr(∆ ≥ k + r) (4.17)

follows for any r ∈ Z+. From Lemma 6,

Pr(∆ ≥ m+ 1) ≥ 1− λm (4.18)

For k = m+ 1 and r = γ −m in (4.17), we obtain:

Pr(∆ ≥ γ + 1) ≥ P γ−m
B Pr(∆ ≥ m+ 1) ≥ P γ−m

B (1− λm) (4.19)

Equality holds in (4.13) iff a transmission happens with probability 1 at s = (k,G)

state. Equality in (4.14)-(4.17) holds iff a transmission always takes place when the

channel state is G and the AoI is greater than or equal to k. Due to the choice of

k = m+1, (ii) is required for an equality. Rest of the equality conditions follow from

(4.18) and Lemma 6.

Finally, we prove Theorem 11 using Lemmas 6 and 7.
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Proof of Theorem 11. Expected age penalty can be written in terms of the steady state

probabilities of ∆:

lim
T→∞

1

T
E

[
T∑
t=1

g(∆t)

]
=

∞∑
k=1

g(k) Pr(∆ = k)

=
∞∑
k=1

g(k)(Pr(∆ ≥ k)− Pr(∆ ≥ k + 1))

= g(1) +
∞∑
k=1

(g(k + 1)− g(k)) Pr(∆ ≥ k + 1)

(a)

≥ g(1) +
Θ∑

k=1

(g(k + 1)− g(k))(1− λk)

+
∞∑

k=Θ+1

(g(k + 1)− g(k))(1− λΘ)P k−Θ
B

= λ

Θ∑
k=1

g(k) + (1− λΘ)PG

∞∑
k=Θ+1

g(k)P k−Θ−1
B

(4.20)

where (a) follows from Lemma 6 and Lemma 7.

Corollary 3. If the function g is strictly increasing, then equality in (4.5) holds if

and only if the conditions (i)-(iv) are satisfied. In this case, π∗ becomes the optimal

stationary policy and π∗ is unique.

4.2.1.3 Derivation of the Threshold

In the previous section, we showed what the transmission probabilities should be

under an optimal policy, except that we did not find the value of Θ. We also did not

reveal the transmission probability of π∗ when the age is equal to Θ. In this section,

we fully derive the policy π∗ that satisfies the conditions of Theorem 11. This policy

is expressed in Theorem 12.

Theorem 12. The optimal policy π∗ for Problem 1 under IID channel states is a

randomized threshold policy, which can be written as:

π∗(ut = 1 | st = (∆t, Ct)) =


1, ∆t > Θ and Ct = G

pΘ, ∆t = Θ and Ct = G

0, ∆t < Θ or Ct = B

(4.21)
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where threshold Θ and randomization coefficient pΘ are given as:

Θ =

⌊
1 +

1

λ
− 1

PG

⌋
(4.22)

pΘ = Θ−
(
1

λ
− 1

PG

)
(4.23)

Proof. In the proof, we shall derive the values of Θ and pΘ. Note that there can be

two different choices of thresholds depending on whether pΘ ∈ [0, 1) or pΘ ∈ (0, 1].

We assume pΘ ∈ (0, 1] without loss of generality to ensure that there exists a unique

threshold and a unique set of parameters as a result of our analysis.

In Fig. 2.2, the state diagram for the policy above is illustrated. Corresponding state

transition probabilities and total probability equation are as follows:

Pr(∆ = k) = Pr(∆ = 1) if k ≤ Θ (4.24)

Pr(∆ = Θ+ 1) = Pr(∆ = Θ)(1− pΘPG) (4.25)

Pr(∆ = k) = Pr(∆ = k − 1)PB if k ≥ Θ+ 2 (4.26)

∞∑
k=1

Pr(∆ = k) = 1 (4.27)

Note that the probability of making a succesful transmission and returning to the state

∆ = 1 is zero while the age is less than Θ, leading to (4.24). We obtain a closed-form

solution of Pr(∆ = k) by solving these equations together, with the first element of

the series being equal to:

Pr(∆ = 1) =
1

Θ− pΘ + 1
PG

(4.28)

Due to the conditions (iii) and (iv) in Theorem 11, Pr(∆ = 1) = λ. Therefore,

1

Θ− pΘ + 1
PG

= λ (4.29)

Finally, we use the fact that Θ is an integer and pΘ ∈ (0, 1] to derive the unknown

parameters as in (4.22) and (4.23).
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Corollary 4 (Optimal Age Violation Probability). If g function is set as g(∆) =

u(∆ − γ) where u(·) is the unit step function such that u(x) = 1x>0, expected age

penalty would be equal to the age violation probability with a violation threshold

γ. The optimal threhold policy π∗ derived in Theorem 3 minimizes the age violation

probability and optimal age violation probability can be computed in closed form as

in the following:

Pr(∆ > γ) ≥

 1− λγ, γ ≤ Θ

P γ−Θ
B (1− λΘ) , γ ≥ Θ.

(4.30)

Corollary 5 (Optimal Time Average AoI). The threshold policy π∗ derived in Theo-

rem 3 minimizes the time average AoI, when g function is set as the identity function

such that g(∆) = ∆. Then, optimal time average AoI can be computed in closed form

as in the following:

lim
T→∞

1

T
E

[
T∑
t=1

∆t

]
≥ 1

PG

+ λΘ

(
1

λ
− 1

PG

− Θ− 1

2

)
. (4.31)

4.2.2 Markovian Channel

In the Markovian channel case, the channel is characterized by the transition proba-

bilities, p01, p10. For the special case of p01 + p10 = 1, the channel becomes mem-

oryless with channel states becoming independent and identically distributed, which

was thoroughly analyzed in the previous part. In the analysis of Markovian channel

case, we propose a time-inhomogenous Markov chain that will investigate the state

evolutions between successive transmissions. For reference, state transitions after m

time slots are notated as p(m)
ij :p(m)

11 p
(m)
10

p
(m)
01 p

(m)
00

 =

p11 p10

p01 p00

m

=
1

p01 + p10

p01 p10

p01 p10

+
(1− p10 − p01)

m

p01 + p10

 p10 −p10

−p01 p01

 (4.32)

Let (Y1, Y2, . . .) process be defined as the times between consecutive successful trans-

missions. This process is causal and Y1, Y2, . . . , Yn has a joint probability measure

that can be addressed. Consequently, we may refer to the marginal distribution of Yn
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Figure 4.2: State Diagram of a Gilbert-Elliott Channel

in the rest of this paper. We can also transform the average energy constraint in (4.4)

onto the Yn process, because
∑n

i=1 Yi is the time of the nth successful transmission:

lim
n→∞

E

[∑n
i=1 Yi

n

]
= lim

n→∞

∑n
i=1 E[Yi]

n
=

1

λ
(4.33)

We may also express the average age penalty in terms of Yn process as follows:

lim
T→∞

1

T

T∑
t=1

g(∆t) = lim
n→∞

∑n
i=1

∑Yi

j=1 g(j)∑n
i=1 Yi

(4.34)

Overall, we may formulate the objective of this part as follows: Find a policy π such

that, (4.34) is minimized while the energy constraint in (4.33) is satisfied.

The steady state probability of channel being in the G state is PG = p01
p01+p10

. As

is discussed earlier, if λ is greater than PG, optimal policy is to transmit a packet

whenever the channel is in G state. Hence, we shall focus solely on λ < PG case.

In the following, we present the main result of this section that asserts the optimality

of a stationary threshold policy:

Theorem 13. If λ < PG, then the optimal policy π∗ is a randomized threshold policy,

which is described as:

Pr(at = 1 | ∆t, ct) =


1, ∆t > Θ and ct = G

pΘ, ∆t = Θ and ct = G

0, ∆t < Θ or ct = B

(4.35)

where the age threshold Θ is the greatest integer that satisfies the following inequal-

ity:

Θ− caΘ ≤ b (4.36)

where

a = 1− p10 − p01
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b =
1

λ
− 1

p01
+

1

p01 + p10

c =
1

p01
− 1

p01 + p10

and the randomization coefficient pΘ is:

pΘ =
b−Θ+ caΘ

1 + caΘ − caΘ+1
(4.37)

In order to prove this theorem, we shall prove that a stationary policy is optimal and

that the threshold policy described in Theorem 13 is optimal among the stationary

policies. To this end, we will firstly show that given the expectation constraint on Yi

for an arbitrary i:

E[Yi] =
∞∑
k=1

Pr(Yi ≥ k) = γi (4.38)

the following total age penalty function between the ith and (i+ 1)th transmissions is

minimized if a threshold policy is deployed:

g̃i ≜ E

[
Yi∑
j=1

g(j)

]
=

∞∑
k=1

Pr(Yi = k)
k∑

j=1

g(j) =
∞∑
k=1

Pr(Yi ≥ k)g(k) (4.39)

After that, we shall show the stationarity of the optimal policy.

4.2.2.1 Optimality of a Threshold

In this section, we will investigate the system between two consecutive transmissions,

namely ith and (i+ 1)th successful transmissions. We denote the expected value of Yi

by γi, as in (4.38). Note that, we assume γi is a real number and that E[Yi] < ∞. We

comment on the special case of E[Yi] = ∞ at the end of this section. With a slight

abuse of notation, we use Y and γ instead of Yi and γi, respectively.

We use the Markov chain illustrated in Fig. 4.2 to model the evolution of the system

between ith and (i + 1)th successful transmissions. The three states of this Markov

Chain are T (transmitted), G (good, no transmission yet), B (bad, no transmission

yet). We add an additional state to the Markov Chain to the channel model illustrated

in Fig. 4.3. This state T is an absorbing state and stands for the (i+1)th transmission

in the network, that is effectively the end of this MC.
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Figure 4.3: A time-inhomogenous Markov Chain to model the system between con-

secutive transmissions

The kth iteration of this MC stands for the kth time slot after a successful transmission,

so k is equal to the AoI. We represent the probability of not making a transmission

while the channel is in G state at kth iteration as rk. The value of rk is determined

according to the policy π and may be influenced by the previous transmission times.

In this section, we analyze over an arbitrary sequence of rk series such that (4.38) is

satisfied and determine what should the rk sequence be so that total age penalty is

minimized. The sequence rk does not necessarily take the same value for each k, so

the MC in Fig. 4.3 should be considered as a time-inhomogenous Markov chain.

We introduce the variables xk and yk to denote the probabilities of MC being at state

G and B at kth iteration, respectively. A successful transmission may not occur while

the channel is in B state, so the channel in the same slot as a successful transmission
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must be in G state. Therefore, the initial state is:x1

y1

 =

p11
p10

 (4.40)

The pair of (xk, yk) evolves as:xk+1

yk+1

 =

p11rk p01

p10rk p00

xk

yk

 (4.41)

If the MC is at state T at the kth iteration, then a successful transmission must have

happened before step k, i.e. Y < k. Converse of this holds as well. Hence, Pr(Y ≥
k) = xk + yk. Then the expectation condition in (4.38) can be used to establish the

following relation between xk, yk series and γ.
∞∑
k=1

(xk + yk) =
∞∑
k=1

Pr(Y ≥ k) = E[Y ] = γ (4.42)

Following proposition discloses some of the main characteristics of the xk and yk

series.

Proposition 6. i) If k > l, then

yk ≥ ylp
k−l
00 (4.43)

holds for ∀k, l ∈ Z+.

ii) For ∀j, k ∈ Z+,
dxk

drj
≥ 0,

dyk
drj

≥ 0 (4.44)

holds.

Proof. See Appendix E.

In the following two Lemmas, we establish a lower bound the sum of xk and yk series

to establish some key properties on the distribution of Y ; which will then be used to

show the optimality of a threshold policy.

Lemma 8. Series Cm is defined as:

Cm =

(
m∑
k=1

xk + yk

)
+ ym

(
1− p00

p10

)
(4.45)

Then,
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(i) dCm

drj
≥ 0 for ∀m, j ∈ Z+.

(ii) Cm ≤ m+ p
(m)
10

(
1− p00

p10

)
for ∀m ∈ Z+.

Proof. Due to causality, the value of rj has no effect on the system until the (j + 1)th

iteration and has no relevance to xk and yk if k ≤ j. Therefore, dCm

drj
= 0 if m ≤ j. If

m = j + 1, then (4.41) is used to calculate following derivations:

d(xj+1 + yj+1)

drj
= xj,

dyj+1

drj
= xjp10 (4.46)

leading to:
dCj+1

drj
= xj(p10 + p01) ≥ 0 (4.47)

Next, we investigate the case of m ≥ j + 2. For any n ≥ 2,

Cn − Cn−1 = xn + yn + (yn − yn−1)

(
1− p00

p10

)
(4.48)

We may show that d(Cn−Cn−1)
drj

≥ 0 for any n ≥ j+2 to prove the first property. From

(4.41):
dyn
drj

= p10rn−1
dxn−1

drj
+ p00

dyn−1

drj
for any n ≥ j + 2 (4.49)

d(xn + yn)

drj
= rn−1

dxn−1

drj
+

dyn−1

drj
for any n ≥ j + 2 (4.50)

We derive the expression in (4.48) to show monotonicity of dCn

drj
for n:

dCn

drj
− dCn−1

drj
=

d(xn + yn)

drj
+

d(yn − yn−1)

drj

(
1− p00

p10

)
= (p01 + p10)rn−1

dxn−1

drj
+

p00p01
p10

dyn−1

drj
≥ 0

(4.51)

Finally, (4.47) and (4.51) is used to conclude the proof of the first property:

dCm

drj
=

dCj+1

drj
+

m∑
n=j+2

(
dCn

drj
− dCn−1

drj

)
≥ 0 (4.52)

As a result of the first property, Cm is maximized when r1 = r2 = . . . = rm−1 = 1.

In this case, xn + yn = 1 for all 1 ≤ n ≤ m and ym = p
(m)
10 ; second property

follows.

Lemma 9. Let Dm ≜ m+ p
(m)
10

(
1− p00

p10

)
. For ∀m,n ∈ Z+; if n ≥ 2, then

∞∑
k=m+n

(xk + yk) ≥
p10p

n−2
00

p10 + p01
(γ −Dm) (4.53)
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Proof. Say we fix the values of xm+n−1 and ym+n−1. Then, the sum
∑∞

k=m+n(xk+yk)

would be minimized if rj = 0 for all j ≥ m+ n− 1, due to Prop 6. Hence,
∞∑

k=m+n

(xk + yk) ≥
∞∑

k=m+n

ym+n−1p
k−m−n
00 =

ym+n−1

p01
(4.54)

Using Prop. 6, above statement can be written in a more general form that holds for

any n− 1 ≥ d ≥ 1:
∞∑

k=m+n

(xk + yk) ≥ ym+d
pn−d−1
00

p01
(4.55)

Next, suppose (4.53), the lemma statement, is not true:
∞∑

k=m+n

(xk + yk) <
p10p

n−2
00

p10 + p01
(γ −Dm) (4.56)

From (4.55) and (4.56), we would have the following inequality:

ym+d <
p01p10p

d−1
00

p10 + p01
(γ −Dm) (4.57)

Transition probabilities in (4.41) can bu used to derive that:

xk+1 + yk+1 = yk

(
1− p00

p10

)
+

yk+1

p10
(4.58)

The equation in (4.58) is used to derive:

m+n−1∑
k=m+1

xk + yk = ym

(
1− p00

p10

)
+

(
m+n−2∑
k=m+1

yk

)(
p01 + p10

p10

)
+

ym+n−1

p10

(a)
< ym

(
1− p00

p10

)
+

n−2∑
d=1

p01p
d−1
00 (γ −Dm) +

p01p
n−2
00

p10 + p01
(γ −Dm)

= ym

(
1− p00

p10

)
+

(
1− p10p

n−2
00

p10 + p01

)
(γ −Dm)

(4.59)

where (a) follows from (4.57). In Lemma 8, we had shown that Cm ≤ Dm for all

m ∈ Z+. We use this inequality in the following:

m+n−1∑
k=1

xk + yk <

m∑
k=1

(xk + yk) + ym

(
1− p00

p10

)
+

(
1− p10p

n−2
00

p10 + p01

)
(γ −Dm)

= Cm +

(
1− p10p

n−2
00

p10 + p01

)
(γ −Dm)

≤ Dm +

(
1− p10p

n−2
00

p10 + p01

)
(γ −Dm)

(4.60)
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Finally, we get the following contradiction, where (a) follows from (4.56) and (4.61):

γ =
∞∑
k=1

(xk + yk) =
m+n−1∑
k=1

(xk + yk) +
∞∑

k=m+n

(xk + yk)

< Dm +

(
1− p10p

n−2
00

p10 + p01

)
(γ −Dm) +

p10p
n−2
00

p10 + p01
(γ −Dm) = γ

(4.61)

Due to the contradiction, (4.56) must be untrue and therefore (4.53) holds.

In Lemma 2, the equality may be obtained setting rj = 1 for all j < m and rj = 0 for

all j > m. As such, we argue that an age threshold may be used to minimize. We use

this as the basic intuition behind the threshold policy and define the following π(T )

sequence.

Definition 2. Let the age threshold, Θ, be the greatest integer such that

Θ+
p
(Θ)
10

p01
≤ γ (4.62)

or equivalently,

Θ− caΘ ≤ b (4.63)

where

a = 1− p10 − p01

b = γ − c

c =
1

p01
− 1

p01 + p10

Threshold policy π(T ) is defined as follows: The probability of not making a transmis-

sion while the channel is G, after m time slots have passed since the last transmission

is:

r(T )
m =


1, m < Θ

b−Θ+caΘ

1+caΘ−caΘ+1 , m = Θ

0, m > Θ

(4.64)

Analogous to Y , let Y (T ) be defined as the time between the consecutive transmis-

sions if π∗ was employed. Then,

Pr(Y (T ) ≥ m) =


1, m ≤ Θ

p01
p10+p01

γ + p10
p10+p01

DΘ −Θ, m = Θ+ 1
p01p10p

m−Θ−2
00

p10+p01
(γ −DΘ) , m ≥ Θ+ 2

(4.65)
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Lemma 10. For any m ∈ Z+,

∞∑
k=m

Pr(Y ≥ k) ≥
∞∑

k=m

Pr(Y (T ) ≥ k) (4.66)

Proof. Using (4.65),

∞∑
k=m

Pr(Y (T ) ≥ k) =

 γ −m+ 1, m ≤ Θ+ 1
p10p

m−Θ−2
00

p10+p01
(γ −DΘ) , m ≥ Θ+ 2

(4.67)

If m ≥ Θ+ 2, the inequality follows directly from Lemma 2. If m ≤ Θ+ 1, then

∞∑
k=m

Pr(Y ≥ k) = γ −
m−1∑
k=1

Pr(Y ≥ k)

≥ γ − (m− 1) =
∞∑

k=m

Pr(Y (T ) ≥ k)

(4.68)

Finally, we use Lemma 3 to show that the threshold policy achieves optimal results

over the minimization of age penalty.

Theorem 14. The threshold policy minimizes the expected age penalty given the

E[Y ] = γ constraint:

g̃ ≥ g̃(T ) (4.69)

where g̃ and g̃(T ) are defined as:

g̃ ≜ E

[
Y∑
j=1

g(j)

]
=

∞∑
k=1

Pr(Y = k)
k∑

j=1

g(j) (4.70)

g̃(T ) ≜ E

Y (T )∑
j=1

g(j)

 =
∞∑
k=1

Pr(Y (T ) = k)
k∑

j=1

g(j) (4.71)

Proof. Define Am and Bm series to be:

Am =
∞∑

k=m

Pr(Y ≥ k), Bm =
∞∑

k=m

Pr(Y (T ) ≥ k) (4.72)
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Then, Am ≥ Bm for all m ∈ Z+ due to Lemma 3 and:

∞∑
k=1

(Pr(Y ≥ k)−Pr(Y (T ) ≥ k))g(k) =
∞∑
k=1

(Ak − Ak+1 −Bk +Bk+1)g(k)

=
∞∑
k=1

(Ak −Bk)g(k)−
∞∑
k=1

(Ak+1 −Bk+1)g(k)

=
∞∑
k=1

(Ak −Bk)g(k)−
∞∑
k=2

(Ak −Bk)g(k − 1)

= (A1 −B1)g(1) +
∞∑
k=2

(Ak −Bk)(g(k)− g(k − 1))
(a)

≥ 0

(4.73)

where (a) follows from Ak ≥ Bk and g(k) ≥ g(k − 1) for all k.

4.2.2.2 Optimality of Stationarity

In the previous subsection, we have shown the optimization process of Y given

E[Y ] = γ. Let f(γ) be the minimum achievable age penalty if E[Y ] = γ.

f(γ) =
∞∑
k=1

Pr(Y (T ) ≥ k)g(k)

=
Θ∑

k=1

g(k) +

(
p01

p10 + p01
γ +

p10
p10 + p01

DΘ −Θ

)
g(Θ + 1)

+
∞∑

k=Θ+2

p01p10p
k−Θ−2
00

p10 + p01
(γ −DΘ) g(k)

(4.74)

Derivative of f is:

df
dγ

=
p01

p10 + p01
g(Θ + 1) +

∞∑
k=Θ+2

p01p10p
k−Θ−2
00

p10 + p01
g(k) (4.75)

Let γ1 and γ2 be two real numbers such that γ2 ≥ γ1. Let Θ1 and Θ2 be the age

thresholds when E[Y ] is γ1 and γ2, respectively. Then, Θ2 ≥ Θ1 and

df
dγ

∣∣∣∣
γ=γ2

≥ df
dγ

∣∣∣∣
γ=γ1

(4.76)

since g(k) is non-decreasing. Consequently, the derivative of f is non-decreasing,

hence, f is convex. Now let’s return the original (Y1, Y2, . . .) process. Due to the
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mean energy constraint:

lim
n→∞

E

[∑n
i=1 Yi

n

]
= lim

n→∞

∑n
i=1E[Yi]

n

= lim
n→∞

∑n
i=1 γi
n

= E[γ] =
1

λ

(4.77)

Mean age penalty is:

lim
n→∞

E

[∑n
i=1

∑Yi

j=1 g(j)∑n
i=1 Yi

]
≥ λ lim

n→∞
E

[∑n
i=1

∑Yi

j=1 g(j)

n

]
(a)

≥ λ lim
n→∞

E

[∑n
i=1 f(γi)

n

]
= λE[f(γ)]

(4.78)

where (a) follows from Theorem 1. Finally, from Jensen’s Inequality,

E[f(γ)] ≥ f(E[γ]) = f(1/λ) (4.79)

Equality occurs if E[Yi] = 1/λ for all i ∈ Z+. As a result, mean age penalty is

minimized if all instances of Yi are expected to use the same amount of energy and a

threshold policy is employed for each of them.

4.3 Numerical Results and Discussion

We compare the performance of our threshold policy to a uniform transmission policy

that performs a transmission at any time with probability λ
PG

while the channel state

is G. The value of λ
PG

is chosen such that the time average energy constraint is fully

utilized by both policies and a fair comparison can be made, however, two policies

converge to a zero-wait policy as λ approaches PG with diminishing differences in

terms of performance. Note that, we assume λ to be smaller than PG, as explained in

Section 4.2.1.2.

We run Monte Carlo simulations for 106 time slots with 100 iterations and for PG =

0.5. Fig. 4.4 depicts the age violation probability of the optimal threshold policy and

uniform transmission policy for a violation threshold of 15 time slots. We observe that

the age violation probability is reduced substantially compared to the uniform policy,

especially when λ is between 0 and PG and far from both extremes. The results were
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Figure 4.4: Age violation probability vs average energy rate

verified to be consistent with the theoretical findings. In Fig. 4.5, the optimal time

average age penalty is illustrated for linear (g(∆) = ∆) and exponential (g(∆) =

1.5∆−1) age penalty functions. We observe that optimal average age penalty changes

linearly when the threshold Θ stays fixed within a limited range of λ, however, the

plots resemble a geometrical decay over a long range of λ in which Θ changes with

λ, as in Fig. 4.4.
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Figure 4.5: Time average age penalty under different penalty functions
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CHAPTER 5

CONCLUSIONS

In this thesis, the information freshness and throughput performance of our recent

random access and wireless energy transfer schemes were studied.

In Chapter 2, we have presented a comprehensive steady-state analysis of threshold-

ALOHA, which is an age-aware modification of slotted ALOHA proposed in [12]. In

threshold-ALOHA each terminal suspends its transmissions until its age exceeds a

certain threshold, and once age exceeds the threshold, it attempts transmission with

constant probability τ , just as in standard slotted ALOHA. We have analyzed time-

average expected age attained, and explored its scaling with network size. We adopted

the generate-at-will model where each time a user attempts transmission, it generates

a fresh packet, accordingly every time a successful transmission occurs, the age of

the corresponding flow is reset to 1. We have firstly derived the steady state solutions

of DTMC that was formed in [12] and subsequently found the distribution of number

of active users. We have shown that the policy converges to running slotted ALOHA

with fewer sources: on average about one fifth of the users is active at any time.

We then formulated an expression for avg. AoI and derived optimal parameters of

the policy. This resolved the conjectures in [12] by confirming that the optimal age

threshold and transmission probability are 2.2n and 4.69/n, respectively. We have

found optimal avg. AoI to be 1.4169n, which is half of what is achievable using

slotted ALOHA while the loss from the maximum achievable throughput of e−1 is

below 1%.

In Chapter 3, we introduced a novel random access policy called MuMiSTA, a reser-

vation based extension of the threshold Aloha policy. We have derived the maximum

achievable throughput for any number of mini slots. We have constructed an analogy
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between threshold Aloha and MuMiSTA and found average AoI expressions for Mu-

MiSTA. It was shown that MuMiSTA can achieve average AoI that is very close to

the ideal round-robin case while keeping its random-access structure.

In Chapter 4, we designed a point-to-point information retrieval policy that minimizes

a generalized age penalty, on a binary ON/OFF channel with a power constrained

information pulling receiver. Modeling the problem as a CMDP, we showed that there

exists a threshold policy that is optimal for the problem. We computed the threshold.

The optimal time average Age of Information and age violation probabilities were

found as corollaries to our main findings. We also unveiled an optimal policy for

temporally correlated channels. Finally, we illustrated the performance impact of

using this age-optimized policy, by comparing it to a benchmark uniform policy with

the same energy expenditure.
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APPENDIX A

PROOF OF LEMMA 2

We firstly prove that properties of Lemma hold for s = 1, 2, . . . ,Γ − 1. Property (i)

and (ii) follows from Prop. 3 (i), π(SP
1 ) = πm1 and π(SP

2 ) = πm2 . Property (iii)

follows from the same property, albeit not directly:

lim
n→∞

π(SP
1 )

nπ(SP
2 )

= lim
n→∞

πm1

nπm1−1

(a)
= lim

n→∞
1− (m1 − 1)τ(1− τ)m1−2

nτ(1− τ)m1−1

=
ekα

α
− k

(A.1)

where (a) follows from (2.12).

Next, we calculate the steady state probabilities of the states in PΓ where s = Γ.

We firstly show that π(SP
1 ) = πm1 . Assuming that the current state is SP

1 , if 1 ̸∈
{u1, u2, . . . , un−m1−1}, then previous state must be of one of the following types:

• (Γ− 1,m1, {u1 − 1, u2 − 1, . . . , un−m1−1 − 1})

• (Γ− 1,m1 − 1, {Γ− 1, u1 − 1, u2 − 1, . . . , un−m1−1 − 1})

Steady state probability expression for states of these types are given in Prop. 3 (ii).

Steady state probabilities for states of the first type and second type are πm1 and

πm1−1, respectively. Steady state probability of SP
1 can be derived using the steady

state probabilities of preceding states along with their transition probabilities:

π(SP
1 ) = πm1(1−m1τ(1− τ)m1−1) + πm1−1m1(1− (m1 − 1)τ(1− τ)m1−2) = πm1

(A.2)

Resulting πm1 is obtained through the ratio given in (2.12). Now, we calculate the

steady state probability for the case 1 ∈ {u1, u2, . . . , un−m1−1}, following similar

79



steps. W.l.o.g., assume that un−m1−1 = 1. Then previous state must be one of the

following types:

• (Γ− 1,m1 + 1, {u1 − 1, u2 − 1, . . . , un−m1−2 − 1})

• (Γ− 1,m1, {Γ− 1, u1 − 1, u2 − 1, . . . , un−m1−2 − 1})

Steady state probabilities for states of the first type and second type are πm1+1 and

πm1 , respectively. Steady state probability of SP
1 is derived as:

π(SP
1 ) = πm1+1τ(1− τ)m1 + πm1(m1)τ(1− τ)m1−1 = πm1

(A.3)

Due to symmetry, π(SP
2 ) = πm2 . Property (i) and (ii) follows from Prop. 3 (i) and

Property (iii) follows from (A.1).

Finally, we prove that properties of the Lemma hold for ∀s ≥ Γ by induction. Initial

case s = Γ has been covered above. We assume s > Γ and that above properties hold

for all states of PΓ in which age of the pivot source is smaller than s. Then we prove

property (i) in two separate cases:

Case 1. If 1 ̸∈ {u1, u2, . . . , un−m−1}
In order to make the equations easier to read, we shorten steady state probability

expressions in the following way:

π(s)
m = π(s,m, {u1, u2, . . . , un−m−1}) = π(SP

1 ) (A.4)

π(s−1)
m = π(s− 1,m, {u1 − 1, u2 − 1, . . . , un−m−1 − 1}) = π(QP

1) (A.5)

π
(s−1)
m−1 = π(s− 1,m− 1, {Γ− 1, u1 − 1, u2 − 1, . . . , un−m−1 − 1}) (A.6)

Steady state prob. of the states that can precede a state of (s,m, {u1, u2, . . . , un−m−1})
are π

(s−1)
m or π(s−1)

m−1 . Value of π(s)
m is calculated as:

π(s)
m = π(s−1)

m (1− (m+ 1)τ(1− τ)m) + π
(s−1)
m−1 (m+ 1)(1−mτ(1− τ)m−1) (A.7)
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Then,

lim
n→∞

π
(s)
m

π
(s−1)
m

= lim
n→∞

π
(s−1)
m (1− (m+ 1)τ(1− τ)m) + π

(s−1)
m−1 (m+ 1)(1−mτ(1− τ)m−1)

π
(s−1)
m

= lim
n→∞

1− (m+ 1)τ(1− τ)m +
π
(s−1)
m−1

π
(s−1)
m

(m+ 1)(1−mτ(1− τ)m−1)

= lim
n→∞

1− m+ 1

n
(nτ)(1− τ)m +

nπ
(s−1)
m−1

π
(s−1)
m

m+ 1

n
(1− m

n
(nτ)(1− τ)m−1)

(a)
= lim

n→∞
1− kαe−kα +

1
ekα

α − k
k(1− kαe−kα) = 1

(A.8)

where (a) follows from property (iii).

Case 2. If 1 ∈ {u1, u2, . . . , un−m−1}, then w.l.o.g. un−m−1 = 1

In order to make the equations easier to read, we shorten steady state probability

expressions in the following way:

π(s)
m = π(s,m, {u1, u2, . . . , un−m−2, 1}) = π(SP

1 ) (A.9)

π(s−1)
m = π(s− 1,m, {Γ− 1, u1 − 1, u2 − 1, . . . , un−m−2 − 1}) = π(QP

1) (A.10)

π
(s−1)
m+1 = π(s− 1,m+ 1, {u1 − 1, u2 − 1, . . . , un−m−2 − 1}) (A.11)

Steady state prob. of the states that preceding a state of (s,m, {u1, u2, . . . , un−m−2, 1})
are π

(s−1)
m or π(s−1)

m+1 . Value of π(s)
m is calculated as:

π(s)
m = π

(s−1)
m+1 τ(1− τ)m + π(s−1)

m mτ(1− τ)m−1 (A.12)

Then,

lim
n→∞

π
(s)
m

π
(s−1)
m

= lim
n→∞

π
(s−1)
m+1 τ(1− τ)m + π

(s−1)
m mτ(1− τ)m−1

π
(s−1)
m

= lim
n→∞

π
(s−1)
m+1

π
(s−1)
m

τ(1− τ)m +mτ(1− τ)m−1

= lim
n→∞

π
(s−1)
m+1

nπ
(s−1)
m

(nτ)(1− τ)m +
m

n
(nτ)(1− τ)m−1

= lim
n→∞

(
ekα

α
− k)αe−kα + kαe−kα = 1

(A.13)

Thus, the proof of property (i) is completed. Next, for the case m1 = m2,

lim
n→∞

π(SP
1 )

π(SP
2 )

= lim
n→∞

π(SP
1 )

π(QP
1)

π(QP
2)

π(SP
2 )

π(QP
1)

π(QP
2)

(a)
= lim

n→∞
π(QP

1)

π(QP
2)

(b)
= 1

(A.14)
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where (a) follows from property (i) and (b) follows from property (ii) since state of

the pivot source for states QP
1 and QP

2 is s− 1 and number of active sources is m1 and

m2 respectively.

Similarly, for the case m1 = m2 + 1,

lim
n→∞

π(SP
1 )

π(nSP
2 )

= lim
n→∞

π(SP
1 )

π(QP
1)

π(QP
2)

π(SP
2 )

π(QP
1)

nπ(QP
2)

(a)
= lim

n→∞
π(QP

1)

nπ(QP
2)

(b)
=

ekα

α
− k

(A.15)

where (a) follows from property (i), (b) follows from property (iii) since state of the

pivot source for states QP
1 and QP

2 is s− 1 and number of active sources is m1 and m2

respectively.
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APPENDIX B

PROOF OF THEOREM 2

We shall prove the following Lemma, from which Theorem 2 will follow as a special

case for (a, b) = (0, 1).

Lemma 11. For (a, b) ⊆ (0, 1), let k0 be the only root of f(k) in the interval (a, b) and

f ′(k0) < 0, limk→af(k) ̸= 0, limk→bf(k) ̸= 0. Then for the sequence ϵn = cn−1/3

where c ∈ R+,

i)
Pr
(∣∣m

n
− k0

∣∣ ≥ ϵn,
m
n
∈ (a, b))

)
Pnk0

→ 0 (B.1)

ii)

Pr
(∣∣∣m

n
− k0

∣∣∣ < ϵn | m
n

∈ (a, b)
)
→ 1 (B.2)

Proof. Firstly, we make the observation that if f(k) satisfies above conditions, then

we can find a positive ϵ small enough such that for ∀k ∈ (k0+ ϵ, b), f(k) < f(k0+ ϵ)

holds.

From this, for b > k = m
n
> k0 + ϵ

ln(
Pm

Pm−1

) = f(k) < f(k0 + ϵ) (B.3)

Pm < Pm−1 exp(f(k0 + ϵ)) (B.4)

Pm < Pm−l exp(f(k0 + ϵ))l (B.5)
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nb∑
i=n(k0+ϵ)

Pi <
nb∑

i=n(k0+ϵ)

Pn(k0+ϵ) exp(f(k0 + ϵ))i−n(k0+ϵ) <
Pn(k0+ϵ)

1− exp(f(k0 + ϵ))

(B.6)

Pr(
m

n
− k0 ≥ ϵ,

m

n
∈ (a, b)) <

Pn(k0+ϵ)

1− exp(f(k0 + ϵ))
(B.7)

Similar approach can be used to derive

Pr(
m

n
− k0 ≤ −ϵ,

m

n
∈ (a, b)) <

Pn(k0−ϵ)

1− exp(f(k0 − ϵ))
(B.8)

From the Riemann sum over f(k), (m0 ≜ nk0)

lnPn(k0+ϵ) − lnPm0 =

n(k0+ϵ)∑
i=m0+1

lnPi − lnPi−1 =

n(k0+ϵ)∑
i=m0+1

f(i/n) ≤ n

k0+ϵ∫
k0

f(k)dk

(B.9)

As a result, the following bound is derived:

Pr(
m

n
− k0 ≥ ϵ,

m

n
∈ (a, b)) ≤

Pm0 exp(n
k0+ϵ∫
k0

f(k)dk)

1− exp(f(k0 + ϵ))
(B.10)

The above analysis can be repeated for the negative part to obtain the following

bound:

Pr(
m

n
− k0 ≤ −ϵ,

m

n
∈ (a, b)) <

Pm0 exp(n
k0∫

k0−ϵ

f(k)dk)

1− exp(f(k0 − ϵ))
(B.11)

Next, Taylor series expansion is used to linearize f(k0 + ϵ).

f(k0 + ϵ) = f(k0) + f ′(k0)ϵ+ o(ϵ) (B.12)

For small ϵ, f(k0 + ϵ) ≈ f ′(k0)ϵ. The bound from (B.10) becomes,

Pr(
m

n
− k0 ≥ ϵ,

m

n
∈ (a, b)) < Pm0

exp(f ′(k0)nϵ2/2)

1− exp(f ′(k0)ϵ)
(B.13)

We want to choose an ϵn sequence such that both the sequence and the above bound

converges to 0. ϵn = cn−1/3 satisfies this condition since,

lim
n→∞

exp(f ′(k0)nϵ2/2)

1− exp(f ′(k0)ϵ)
= lim

n→∞
exp(c2f ′(k0)n1/3/2)

1− exp(cf ′(k0)n−1/3)
= 0 (B.14)
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Similar arguments can be used for the negative side and sum of (B.11) and (B.13)

gives the following.

Pr
(∣∣m

n
− k0

∣∣ ≥ ϵn,
m
n
∈ (a, b))

)
Pm0

→ 0 (B.15)

Then, since Pr(m
n
∈ (a, b)) ≥ Pm0 ,

Pr
(∣∣∣m

n
− k0

∣∣∣ ≥ ϵn | k ∈ (a, b)
)
→ 0 (B.16)

Finally, the equation in second property is obtained:

Pr
(∣∣∣m

n
− k0

∣∣∣ < ϵn | k ∈ (a, b)
)
→ 1 (B.17)
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APPENDIX C

PROOF OF THEOREM 3

We only give the proof for the first part of the theorem. Second part follows similarly,

by switching S0 and k0 with S2 and k2. Under the conditions given in part (i), we will

first prove that
Pr(S0) → 1,Pr(S1) → 0,Pr(S2) → 0 (C.1)

To show that Pr(S2) → 0, we use Lemma 11. Lemma 11 can be used for S0 and S2

regions since k0 and k2 satisfy the conditions of the Lemma over regions
(
0, k0+k1

2

)
and

(
k1+k2

2
, 1
)

respectively. Using property (i) of Lemma 11,

Pr(|m
n

− k2| ≥ ϵn, S2) ≤ Pm2o(1) (C.2)

Since Pm2 is the local maxima, we can use it as an upper bound over all Pm values in

the region between k2 − ϵn and k2 + ϵn, which will also be inside S2.

Pr(|m
n

− k2| < ϵn, S2) ≤ Pm22nϵn = Pm22cn
2/3 (C.3)

Pr(S2) ≤ Pm2(2cn
2/3 + o(1)) (C.4)

Now we define k3 such that
k2∫
k3

f(k′)dk′ = 0 and k3 ∈ (k0, k2) holds. Such k3 exists

since
k2∫
k0

f(k′)dk′ < 0 and f(k) is continuous. Then,

ln

(
Pm3

Pm2

)
→ n

k2∫
k3

f(k′)dk′ = 0 (C.5)

Pm3 can be used as a lower bound in interval between k0 and k3, similar to how

Pm2 was used as an upper bound. Furthermore, f(k3) must be negative and thus

k3 ∈ (k0, k1). Hence, k3 does not lie in the region S2 and regions (k0, k3) and S2 are
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disjoint:

1− Pr(S2) ≥ Pr
(m
n

∈ (k0, k3)
)
≥ Pm3n(k3 − k0) (C.6)

Ratio of (C.4) and (C.6) results in the following:

Pr(S2)

1− Pr(S2)
≤ Pm2

Pm3

(
c

k3 − k0
n−1/3 + o(1/n)

)
(C.7)

Upper bound of (C.7) goes to 0, so Pr(S2)/(1−Pr(S2)) goes to 0 as well. As a result,

Pr(S2) → 0. Next, we derive Pr(S1). Region S1 corresponds to the local minima or

the valley of the PMF over the number of active sources. The point with maximum

probability (in PMF) in S1 will be one of the endpoints. We use this probability as an

upper bound over S1.

Pr(S1) < n(
k2 − k0

2
)max{P

n
k0+k1

2

, P
n

k1+k2
2

} (C.8)

ln

(
P
n

k0+k1
2

Pnk0

)
→ n

∫ k0+k1
2

k0

f(k′)dk′ (C.9)

ln

(
P
n

k1+k2
2

Pnk2

)
→ −n

∫ k2

k1+k2
2

f(k′)dk′ (C.10)

Since
∫ k0+k1

2

k0
f(k′)dk′ < 0 and

∫ k2
k1+k2

2

f(k′)dk′ > 0, both P
n

k0+k1
2

and P
n

k1+k2
2

decay

exponentially as n grows, hence Pr(S1) → 0. Since Pr(S0) + Pr(S1) + Pr(S2) = 1,

we finally obtain Pr(S0) → 1. Following bound originates from the conditional

probability:

Pr(|m
n

− k0| < ϵn) ≥ Pr(|m
n

− k0| < ϵn|S0) Pr(S0) (C.11)

From property (ii) of Lemma 11,

Pr(|m
n

− k0| < ϵn|S0) → 1 (C.12)

Finally, Pr(S0) → 1 is used along with (C.11) and (C.12), to conclude the proof:

Pr(|m
n

− k0| < ϵn) → 1 (C.13)
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APPENDIX D

PROOF OF THEOREM 8

The proof of this theorem follows from the proof of Theorem 1 with minor differ-

ences. The type structure of Theorem 1 is not changed and steady state properties of

the pivoted MC remains identical. The results of Lemma 2 are modified due to the

different throughput expression of MuMiSTA:

Lemma 12. Let SP
1 and SP

2 be two arbitrary states in PΓ where the state of the pivot

source is equal for both states. Let the types of SP
1 and SP

2 be:

TP⟨SP
1 ⟩ = (s,m1, {u1, u2, . . . , un−m1−1})

TP⟨SP
2 ⟩ = (s,m2, {v1, v2, . . . , vn−m2−1})

i) Let QP
1 be any state satisfying TP⟨QP

1⟩ = Q(SP
1 ). Then,

lim
n→∞

π(SP
1 )

π(QP
1)

= 1 (D.1)

ii) If m1 = m2, then

lim
n→∞

π(SP
1 )

π(SP
2 )

= 1 (D.2)

iii) If m1 = m2 + 1, then

lim
n→∞

π(SP
1 )

nπ(SP
2 )

= k

(
1

T (αx, τ2, ..., τW )
− 1

)
(D.3)

where limn→∞
m1

n
= k and limn→∞ τn = α. (k, α ∈ R+)

Rest of the proof follows accordingly.
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APPENDIX E

PROOF OF PROPOSITION 6

E.1 First Part

For any j ∈ Z+, the following holds due to (4.41):

yj+1

yj
=

xjp10rj + yjp00
yj

≥ p00 (E.1)

The statement of the proposition follows almost immediately:

yk
yl

=
k−1∏
j=l

yj+1

yj
≥

k−1∏
j=l

p00 = pk−l
00 (E.2)

E.2 Second Part

For the case of k ≤ j, the values of xk and yk are not influenced by rj due to causality

and therefore:
dxk

drj
=

dyk
drj

= 0 (E.3)

< For the case of k = j + 1; dxk

drj
=

d(p11rjxj+p01yj)

drj
= p11xj ≥ 0. Similarly, dyk

drj
=

p10xj ≥ 0. For the remaining cases, we use induction. Assume the proposition

statement holds for k = n case. For k = n+ 1:

dxn+1

drj
= p11rn

dxn

drj
+ p01

dyn
drj

≥ 0, (E.4)

dyn+1

drj
= p10rn

dxn

drj
+ p00

dyn
drj

≥ 0. (E.5)
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By mathematical induction, proof is complete.

λ → p01(p10 + p01)

p01(p10 + p01) + p10
λ (E.6)

92


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Slotted Aloha with an Age Threshold
	System Model
	Problem Definition and Analysis
	Steady State Solution
	Pivoted Markov Chain
	Large network asymptotics
	Double Peak Case
	Steady state average AoI in the large network limit
	Extension to Exogenous Arrivals

	Numerical Results and Discussion

	MuMiSTA: Multiple Mini Slotted Threshold Aloha
	System Model
	Problem Definition and Analysis
	Throughput Optimization Under The Mini Slot Extension
	Ideal case
	Realistic case

	AoI Optimization
	Truncated State Space Model
	Pivoted MC
	Large Network Asymptotics

	Numerical Results and Discussion


	Optimal Age Penalty in Wireless Energy Transfer
	System Model and Problem Formulation
	Problem Definition and Analysis
	Memoryless Channel
	Steady-State Analysis
	Structure of the Optimal Stationary Policy
	Derivation of the Threshold

	Markovian Channel
	Optimality of a Threshold
	Optimality of Stationarity


	Numerical Results and Discussion

	Conclusions
	REFERENCES
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 8
	Proof of Proposition 6
	First Part
	Second Part


